Recent Results on the Longest Common Substring Problem

Jakub Radoszewski

University of Warsaw, Poland and Samsung R&D, Warsaw, Poland

SPIRE 2023, Pisa, Italy, 26-28 September 2023

Longest Common Substring

Definition (Longest Common Substring Problem)

Input: Two strings S and T of length at most n

Output: The longest string U that is a substring of both S and T

c b b a a b c a b c a b c b a d a a b a a b c b a

Longest Common Substring

Definition (Longest Common Substring Problem)

Input: Two strings S and T of length at most n

Output: The longest string U that is a substring of both S and T

c b b a a b c a b c a b c b a d a a b a a b c b b a

This is **not** the Longest Common **Subsequence** problem

Longest Common Factor

Definition (Longest Common Factor (LCF) Problem)

Input: Two strings S and T of length at most n

Output: The longest string U that is a factor (substring) of both S and T

c b b a a b c a b c a b c b a d a a b a a b c b a

This is **not** the Longest Common **Subsequence** problem

Longest Common Factor

Definition (Longest Common Factor (LCF) Problem)

Input: Two strings S and T of length at most n

Output: The longest string U that is a factor (substring) of both S and T

c b b a a b c a b c a b c b a d a a b a a b c b a

This is not the Longest Common Subsequence problem

Motivation for LCF:

- An elementary string similarity measure
- Computationally easier than LCS [1,2]
- [1] A. Abboud, A. Backurs, V. Vassilevska Williams: Tight Hardness Results for LCF and Other Sequence Similarity Measures. FOCS 2015
- [2] K. Bringmann, M. Künnemann: Quadratic Conditional Lower Bounds for String Problems and Dynamic Time Warping. FOCS 2015

History of the LCF problem:

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

History of the LCF problem:

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

History of the LCF problem:

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

History of the LCF problem:

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

[1] P. Weiner: Linear Pattern Matching Algorithms, SWAT 1973

History of the LCF problem:

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

babaa\$aaaba#
S

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

[1] P. Weiner: Linear Pattern Matching Algorithms, SWAT 1973

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

- [1] P. Weiner: Linear Pattern Matching Algorithms, SWAT 1973
- [2] M. Farach: Optimal Suffix Tree Construction with Large Alphabets, FOCS 1997

- Donald E. Knuth conjectured no $o(n \log n)$ -time solution for LCF
- O(n) time LCF for O(1) alphabet using the suffix tree [1]

- O(n) time for many strings of total length O(n) [3]
- [1] P. Weiner: Linear Pattern Matching Algorithms, SWAT 1973
- [2] M. Farach: Optimal Suffix Tree Construction with Large Alphabets, FOCS 1997
- [3] L.C.K. Hui. Color set size problem with applications to string matching. CPM 1992

Packed setting:

- O(1)-sized alphabet, say A, C, G, T
- A string can be represented with $O(n/\log n)$ machine words

Packed setting:

- O(1)-sized alphabet, say A, C, G, T
- A string can be represented with $O(n/\log n)$ machine words

Theorem ([1])

LCF on packed strings can be solved in $O(n/\sqrt{\log n})$ time.

[1] P. Charalampopoulos, T. Kociumaka, S.P. Pissis, R: Faster Algorithms for LCF. ESA 2021

Packed setting:

- O(1)-sized alphabet, say A, C, G, T
- A string can be represented with $O(n/\log n)$ machine words

Theorem ([1])

LCF on packed strings can be solved in $O(n/\sqrt{\log n})$ time.

If alphabet has size σ , the algorithm works in $O(n \log \sigma / \sqrt{\log n})$ time.

[1] P. Charalampopoulos, T. Kociumaka, S.P. Pissis, R: Faster Algorithms for LCF. ESA 2021

Packed setting:

- O(1)-sized alphabet, say A, C, G, T
- A string can be represented with $O(n/\log n)$ machine words

Theorem ([1])

LCF on packed strings can be solved in $O(n/\sqrt{\log n})$ time.

If alphabet has size σ , the algorithm works in $O(n \log \sigma / \sqrt{\log n})$ time.

Relation to packed indexing:

- $O(n \log \sigma / \log n)$ -sized index can be constructed in $O(n \log \sigma / \sqrt{\log n})$ time [2,3]
- No direct computation of packed LCF from packed index is known.
- [1] P. Charalampopoulos, T. Kociumaka, S.P. Pissis, R: Faster Algorithms for LCF. ESA 2021
- [2] D. Kempa, T. Kociumaka: String Synchronizing Sets: Sublinear-time BWT Construction and Optimal LCE Data Structure. STOC 2019
- [3] J.I. Munro, G. Navarro, Y. Nekrich:

Text Indexing and Searching in Sublinear Time. CPM 2020

Some Details on Packed LCF

Assumptions for the talk:

- Alphabet of size $\sigma = O(1)$
- A number in [0, n) encodes $\log_{\sigma} n = \Theta(\log n)$ letters.
- A string of length n is represented by $\Theta(n/\log n)$ numbers in [0, n).

Some Details on Packed LCF

Assumptions for the talk:

- Alphabet of size $\sigma = O(1)$
- A number in [0, n) encodes $\log_{\sigma} n = \Theta(\log n)$ letters.
- A string of length n is represented by $\Theta(n/\log n)$ numbers in [0, n).

Three cases:

- Short LCF: $\leq \frac{1}{3} \log_{\sigma} n$ Medium LCF Long LCF: $\geq \log^4 n$ [1]

We aim at $O(n/\sqrt{\log n})$ time.

[1] P. Charalampopoulos, M. Crochemore, C.S. Iliopoulos, T. Kociumaka, S.P. Pissis, R, W. Rytter, T. Walen: Linear-Time Algorithm for Long LCF with k Mismatches. CPM 2018

Plan of Presentation

- Packed LCF:
 - Short LCF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

Plan of Presentation

- Packed LCF:
 - Short LCF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

Short LCF
$$(\leq \frac{1}{3} \log_{\sigma} n)$$

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

Short LCF
$$(\leq \frac{1}{3} \log_{\sigma} n)$$

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

Short LCF
$$(\leq \frac{1}{3} \log_{\sigma} n)$$

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

Short LCF
$$(\leq \frac{1}{3} \log_{\sigma} n)$$

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

Short LCF
$$(\leq \frac{1}{3} \log_{\sigma} n)$$

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

- $\leq \sigma^{2\ell} = \sigma^{\frac{2}{3}\log_{\sigma} n} = n^{2/3}$ distinct length- 2ℓ substrings of S and T
- They can be computed in $O(n/\log n + n^{2/3})$ time (bitmask tricks)

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

- $\leq \sigma^{2\ell} = \sigma^{\frac{2}{3}\log_{\sigma}n} = n^{2/3}$ distinct length- 2ℓ substrings of S and T
- They can be computed in $O(n/\log n + n^{2/3})$ time (bitmask tricks)
- Let X_1, \ldots, X_p distinct length-2 ℓ substrings in S

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

- $\leq \sigma^{2\ell} = \sigma^{\frac{2}{3}\log_{\sigma}n} = n^{2/3}$ distinct length- 2ℓ substrings of S and T
- They can be computed in $O(n/\log n + n^{2/3})$ time (bitmask tricks)
- Let X_1, \ldots, X_p distinct length-2 ℓ substrings in S
- Let Y_1, \ldots, Y_q distinct length-2 ℓ substrings in T

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

$$newS$$
 X_1 $\#_1$ X_2 $\#_2$ X_3 $\#_3$ X_4 $\#_4$
$$newT$$
 Y_1 $\$_1$ Y_2 $\$_2$ Y_3 $\$_3$ Y_4 $\$_4$ Y_5 $\$_5$

- $\leq \sigma^{2\ell} = \sigma^{\frac{2}{3}\log_{\sigma} n} = n^{2/3}$ distinct length- 2ℓ substrings of S and T
- They can be computed in $O(n/\log n + n^{2/3})$ time (bitmask tricks)
- Let X_1, \ldots, X_p distinct length-2 ℓ substrings in S
- Let Y_1, \ldots, Y_q distinct length-2 ℓ substrings in T

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

$$newS$$
 X_1 $\#_1$ X_2 $\#_2$ X_3 $\#_3$ X_4 $\#_4$ M_4 M_5 M_5 M_5 M_5 M_6 M_6 M_7 M_8 M_8

$$|newS|, |newT| \le n^{2/3}(\frac{2}{3}\log n + 1)$$

- $\leq \sigma^{2\ell} = \sigma^{\frac{2}{3}\log_{\sigma} n} = n^{2/3}$ distinct length- 2ℓ substrings of S and T
- They can be computed in $O(n/\log n + n^{2/3})$ time (bitmask tricks)
- Let X_1, \ldots, X_p distinct length-2 ℓ substrings in S
- Let Y_1, \ldots, Y_q distinct length-2 ℓ substrings in T

- Let $\ell = \frac{1}{3} \log_{\sigma} n$. Split each string into overlapping substrings of length 2ℓ .
- The LCF is a substring of one length- 2ℓ substring in S and in T.

$$newS$$
 X_1 $\#_1$ X_2 $\#_2$ X_3 $\#_3$ X_4 $\#_4$
$$newT$$
 Y_1 $\$_1$ Y_2 $\$_2$ Y_3 $\$_3$ Y_4 $\$_4$ Y_5 $\$_5$

$$|newS|, |newT| \le n^{2/3}(\frac{2}{3}\log n + 1)$$

LCF of newS and newT can be computed in $O(n^{2/3} \log n) = o(n/\log n)$ time.

- $\leq \sigma^{2\ell} = \sigma^{\frac{2}{3}\log_{\sigma} n} = n^{2/3}$ distinct length- 2ℓ substrings of S and T
- They can be computed in $O(n/\log n + n^{2/3})$ time (bitmask tricks)
- Let X_1, \ldots, X_p distinct length-2 ℓ substrings in S
- Let Y_1, \ldots, Y_q distinct length-2 ℓ substrings in T

Plan of Presentation

- Packed LCF:
 - Short LCF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

Difference Cover

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Example. $\{2, 3, 5, 8, 9, 11, 14, 15, 19, 20, ...\}$ is a 6-cover:

Difference Cover

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Example. $\{2, 3, 5, 8, 9, 11, 14, 15, 19, 20, ...\}$ is a 6-cover:

Difference Cover

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Example. $\{2, 3, 5, 8, 9, 11, 14, 15, 19, 20, ...\}$ is a 6-cover:

Difference Cover

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Example. $\{2, 3, 5, 8, 9, 11, 14, 15, 19, 20, ...\}$ is a 6-cover:

Difference Cover

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Example. $\{2, 3, 5, 8, 9, 11, 14, 15, 19, 20, ...\}$ is a 6-cover:

Difference Cover

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Example. $\{2, 3, 5, 8, 9, 11, 14, 15, 19, 20, ...\}$ is a 6-cover:

Lemma ([1])

A *d*-cover *D* such that $D \cap [1, n]$ is of size $O(n/\sqrt{d})$ can be constructed in $O(n/\sqrt{d})$ time.

[1] M. Maekawa: A Square Root N Algorithm for Mutual Exclusion in Decentralized Systems. ACM Trans. Comput. Syst., 1985

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

A *d*-cover *D* such that $D \cap [1, n]$ is of size $O(n/\sqrt{d})$ can be constructed in $O(n/\sqrt{d})$ time.

• Use the lemma for ST, 2n pos., and $d = \ell$; the ℓ -cover has size $O(n/\log^2 n)$.

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

- Use the lemma for ST, 2n pos., and $d = \ell$; the ℓ -cover has size $O(n/\log^2 n)$.
- Let $\ell = \log^4 n$. An ℓ -cover is useful in computing LCF of length $\geq \ell$:

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

- Use the lemma for ST, 2n pos., and $d = \ell$; the ℓ -cover has size $O(n/\log^2 n)$.
- Let $\ell = \log^4 n$. An ℓ -cover is useful in computing LCF of length $\geq \ell$:

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

- Use the lemma for ST, 2n pos., and $d = \ell$; the ℓ -cover has size $O(n/\log^2 n)$.
- Let $\ell = \log^4 n$. An ℓ -cover is useful in computing LCF of length $\geq \ell$:

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

- Use the lemma for ST, 2n pos., and $d = \ell$; the ℓ -cover has size $O(n/\log^2 n)$.
- Let $\ell = \log^4 n$. An ℓ -cover is useful in computing LCF of length $\geq \ell$:

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

- Use the lemma for ST, 2n pos., and $d = \ell$; the ℓ -cover has size $O(n/\log^2 n)$.
- Let $\ell = \log^4 n$. An ℓ -cover is useful in computing LCF of length $\geq \ell$:

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

- Use the lemma for ST, 2n pos., and $d = \ell$; the ℓ -cover has size $O(n/\log^2 n)$.
- Let $\ell = \log^4 n$. An ℓ -cover is useful in computing LCF of length $\geq \ell$:

Definition (Difference cover)

A set D is a d-cover if there is a function shift such that for any i, j > 0 we have $0 \le shift(i, j) < d$ and $i + shift(i, j), j + shift(i, j) \in D$.

Lemma (Maekawa, 1985)

- Use the lemma for ST, 2n pos., and $d = \ell$; the ℓ -cover has size $O(n/\log^2 n)$.
- Let $\ell = \log^4 n$. An ℓ -cover is useful in computing LCF of length $\geq \ell$:

• LCF anchored at a pair of elements of a difference cover

1 c b b a a b c a b c a b c b a 1 2 5 8 11

2 d a a b a a b c b b a 2

• LCF anchored at a pair of elements of a difference cover

1 c b b a a b c a b c a b c b a 1 2 5 8 11

2 d a a b a a b c b b a 2

• LCF anchored at a pair of elements of a difference cover

• LCF anchored at a pair of elements of a difference cover

Reversed	prefixes:	Suffixes:
----------	-----------	-----------

$$2_S$$
 bc1 2_S baabcabcabcba1

$$5_S$$
 aabbc1 5_S bcabcabcba1

$$8_S$$
 acbaabbc1 8_S bcabcba1

$$6_T$$
 aabaad2 6_T bcbba2

$$9_T$$
 bcbaabaad2 9_T ba2

• LCF anchored at a pair of elements of a difference cover

Reversed prefixes:

$$2s$$
 bc1

$$5_S$$
 aabbc1

$$8_S$$
 acbaabbc1

$$6_T$$
 aabaad2

$$9_T$$
 bcbaabaad2

$$11_S$$
 bcba1

$$9_T$$
 ba2

Long LCF ($> \log^4 n$)

LCF anchored at a pair of elements of a difference cover

$$8_S$$
 acbaabbc1 8_S bcabcba1

$$11_{\varsigma}$$
 acbacbaabbc1 11_{ς} bcba1

$$9_T$$
 bcbaabaad2 9_T ba2

6_₹ aabaad2

6₇ bcbba2

Input: two families of pairs of strings, \mathcal{F}_{S} and \mathcal{F}_{T} , of total size N

Output: max{
$$LCP(P_1, Q_1) + LCP(P_2, Q_2) : (P_1, P_2) \in \mathcal{F}_S, (Q_1, Q_2) \in \mathcal{F}_T$$
}

 \mathcal{F}_{ς}

 \mathcal{F}_{T}

	c.
Reversed	pretixes
I (CVCI 3CG	prenixes

- 2_S bc1
- 5_S aabbc1
- 8_S acbaabbc1
- 11_S acbacbaabbc1
- 6_T aabaad2
- 9_T bcbaabaad2

Suffixes:

- 2_S baabcabcabcba1
- 5_S bcabcabcba1
- 8_S bcabcba1
- 11_S bcba1
- 6_T bcbba2
- 9_T ba2

Reversed prefixes:

aabaad2 (6_T)

aabbc1 (5_S)

acbaabbc1 (8_S)

acbacbaabbc1 (11_S)

bc1 (2_S)

bcbaabaad2 (9_T)

Suffixes:

ba2 (9_T)

baabcabcabcba1 (2_S)

bcabcabcba1 (5_S)

bcabcba1 (8_S)

bcba1 (11_S)

bcbba2 (6_T)

Reversed prefixes: aabaad2 (6_T)

aabbc1 (5₅)

acbaabbc1 (8₅)

acbacbaabbc1 (11_S)

bc1(2s)

bcbaabaad2 (9_T)

Suffixes: ba2 (9_{T})

baabcabcabcba1 (2_S)

bcabcabcba1 (5₅)

bcabcba1 (8_S)

bcba1 (11_S)

bcbba2 (6_T)

- The difference cover has size $N = O(n/\log^2 n)$.
- The tries after compactification have O(N) leaves and size O(N).

- The difference cover has size $N = O(n/\log^2 n)$.
- The tries after compactification have O(N) leaves and size O(N).

Lemma. The tries can be constructed in $O(N \log N + n/\log_{\sigma} n)$ time.

- The difference cover has size $N = O(n/\log^2 n)$.
- The tries after compactification have O(N) leaves and size O(N).

Lemma. The tries can be constructed in $O(N \log N + n/\log_{\sigma} n)$ time.

Proof. Merge Sort of strings and O(1)-time LCP-queries from [1].

[1] D. Kempa, T. Kociumaka: String Synchronizing Sets: Sublinear-time BWT Construction and Optimal LCE Data Structure. STOC 2019

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves,
 one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves,
 one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves,
 one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves,
 one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves, one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves, one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves, one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves,
 one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves, one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves,
 one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves, one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves,
 one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- Their subtrees have a pair of equal leaves, one from S and one from T
- depth(u) + depth(v) is max

• Sorted lists can be stored using balanced BSTs (e.g. AVLs)

- Sorted lists can be stored using balanced BSTs (e.g. AVLs)
- Merging AVLs takes $O(N \log N)$ total time (N = size of trie) [1]

[1] M.R. Brown, R.E. Tarjan: A Fast Merging Algorithm. J. ACM, 1979

- Sorted lists can be stored using balanced BSTs (e.g. AVLs)
- Merging AVLs takes $O(N \log N)$ total time (N = size of trie) [1]
- LCAs can be computed in O(1) time after O(N)-time preprocessing [2]
- [1] M.R. Brown, R.E. Tarjan: A Fast Merging Algorithm. J. ACM, 1979
- [2] M.A. Bender, M. Farach-Colton: The LCA Problem Revisited. LATIN 2000

- Sorted lists can be stored using balanced BSTs (e.g. AVLs)
- Merging AVLs takes $O(N \log N)$ total time (N = size of trie) [1]
- LCAs can be computed in O(1) time after O(N)-time preprocessing [2]

MAXPAIRLCP in $O(N \log N + n / \log_{\alpha} n)$ time

- [1] M.R. Brown, R.E. Tarjan: A Fast Merging Algorithm. J. ACM, 1979
- [2] M.A. Bender, M. Farach-Colton: The LCA Problem Revisited. LATIN 2000

14 / 39

- Sorted lists can be stored using balanced BSTs (e.g. AVLs)
- Merging AVLs takes $O(N \log N)$ total time (N = size of trie) [1]
- LCAs can be computed in O(1) time after O(N)-time preprocessing [2]

MAXPAIRLCP in $O(N \log N + n/\log_{\sigma} n)$ time \Rightarrow Long LCF in $O(n/\log n)$ time.

- [1] M.R. Brown, R.E. Tarjan: A Fast Merging Algorithm. J. ACM, 1979
- [2] M.A. Bender, M. Farach-Colton: The LCA Problem Revisited. LATIN 2000

- Nodes *u*, *v* from both tries
- \bullet Their subtrees have a pair of equal leaves, one from S and one from T
- depth(u) + depth(v) is max

- Nodes *u*, *v* from both tries
- ullet Their subtrees have a pair of equal leaves, one from S and one from T
- depth(u) + depth(v) is max

COLORED TREES problem

- Nodes *u*, *v* from both trees
- Their subtrees have a pair of equal leaves of different colors
- depth(u) + depth(v) is max

COLORED TREES problem

- Nodes *u*, *v* from both trees
- Their subtrees have a pair of equal leaves of different colors
- depth(u) + depth(v) is max

COLORED TREES problem can be solved in $O(N \log N)$ time (N is the size of trees).

Plan of Presentation

• Packed LCF:

- Short LCF
- Long LCF
- Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

Three cases:

- Short LCF: $\leq \frac{1}{3} \log_{\sigma} n$: $o(n/\log n)$ time
- Medium-length LCF: $O(n/\sqrt{\log n})$ time?
- Long LCF: $\geq \log^4 n$: $O(n/\log n)$ time

Three cases:

- Short LCF: $\leq \frac{1}{3} \log_{\sigma} n$: $o(n/\log n)$ time
- Medium-length LCF: $O(n/\sqrt{\log n})$ time?
- Long LCF: $\geq \log^4 n$: $O(n/\log n)$ time

MAXPAIRLCP in $O(N \log N + n / \log n)$ time

Three cases:

- Short LCF: $\leq \frac{1}{3} \log_{\sigma} n$: $o(n/\log n)$ time
- Medium-length LCF: $O(n/\sqrt{\log n})$ time?
- Long LCF: $\geq \log^4 n$: $O(n/\log n)$ time

MAXPAIRLCP in $O(N \log N + n / \log n)$ time

• We don't know how to beat $O(N \log N)$ in general

Three cases:

- Short LCF: $\leq \frac{1}{3} \log_{\sigma} n$: $o(n/\log n)$ time
- Medium-length LCF: $O(n/\sqrt{\log n})$ time?
- Long LCF: $\geq \log^4 n$: $O(n/\log n)$ time

MAXPAIRLCP in $O(N \log N + n/\log n)$ time

- We don't know how to beat $O(N \log N)$ in general
- We will consider special cases of MAXPAIRLCP

Three cases:

- Short LCF: $\leq \frac{1}{3} \log_{\sigma} n$: $o(n/\log n)$ time
- Medium-length LCF: $O(n/\sqrt{\log n})$ time?
- Long LCF: $\geq \log^4 n$: $O(n/\log n)$ time

MAXPAIRLCP in $O(N \log N + n / \log n)$ time

- We don't know how to beat $O(N \log N)$ in general
- We will consider special cases of MAXPAIRLCP
- and replace difference covers with string synchronizing sets [1]

[1] D. Kempa, T. Kociumaka: String Synchronizing Sets: Sublinear-time BWT Construction and Optimal LCE Data Structure. STOC 2019

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

a b a a b c a a a a a a a a a b a a b c a
$$au=3$$

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

a baabca aaaaaaa baabca
$$au=3$$

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5} \log_{\sigma} n$, otherwise O(n) time

- small: $|X| = O(n/\tau)$
- consistent: whether $i \in X$ depends only on $W[i..i + 2\tau)$
- dense: $X \cap [i..i + \tau) = \emptyset$ for $i \in [1..n 3\tau + 2]$ iff $per(T[i..i + 3\tau - 1]) > \tau/3$
- fast to construct: in $O(n/\tau)$ time if $\tau \leq \frac{1}{5}\log_{\sigma} n$, otherwise O(n) time
- fast to construct: in $O(n/\log n)$ time if $\tau = \lfloor \frac{1}{5} \log_{\sigma} n \rfloor$

Assume the length of LCF is in $[\tau, \ell]$.

LCF T

Assume the length of LCF is in $[\tau, \ell]$.

LCF T

Assume the length of LCF is in $[\tau, \ell]$.

LCF T

Assume the length of LCF is in $[\tau, \ell]$.

Assume the length of LCF is in $[\tau, \ell]$.

Assume the length of LCF is in $[\tau, \ell]$.

Assume the length of LCF is in $[\tau, \ell]$.

 $O(n/\log n)$ anchors computed in $O(n/\log n)$ time:

- from synchronizing set
- 3 anchors from a τ -run

 $(\leq n/\tau \text{ such runs, computed in } O(n/\log n) \text{ time})$

Assume the length of LCF is in $[\tau, \ell]$.

 $O(n/\log n)$ anchors computed in $O(n/\log n)$ time:

- from synchronizing set
- 3 anchors from a τ -run

 $(\leq n/\tau \text{ such runs, computed in } O(n/\log n) \text{ time})$

Two special types of instances of MAXPAIRLCP:

- 1. (τ, ℓ) -MAXPAIRLCP
- 2. MAXPAIRLCP with first components being prefixes of the same string

Assume the length of LCF is in $[\tau, \ell]$.

 $O(n/\log n)$ anchors computed in $O(n/\log n)$ time:

- from synchronizing set
- 3 anchors from a τ -run

 $(\leq n/\tau \text{ such runs, computed in } O(n/\log n) \text{ time})$

Two special types of instances of MAXPAIRLCP:

- 1. (τ, ℓ) -MAXPAIRLCP
- 2. MAXPAIRLCP with first components being prefixes of the same string

Type 2 can be solved in linear time (one tree in COLORED TREES is a path), $O(n/\log n)$ time in total.

Assume the length of LCF is in $[\tau, \ell]$.

 $O(n/\log n)$ anchors computed in $O(n/\log n)$ time:

- from synchronizing set
- 3 anchors from a τ -run

 $(\leq n/\tau \text{ such runs, computed in } O(n/\log n) \text{ time})$

Two special types of instances of MAXPAIRLCP:

- 1. (τ, ℓ) -MAXPAIRLCP
- 2. MaxPairLCP with first components being prefixes of the same string

Type 2 can be solved in linear time (one tree in COLOREDTREES is a path), $O(n/\log n)$ time in total.

We solve type 1 using a wavelet tree.

Standard wavelet tree [1]:

Standard wavelet tree [1]:

Arbitrarily shaped wavelet tree:

• Shape given by a binary trie, represents an alphabet of strings

Standard wavelet tree [1]:

T 12 7 11 15 9 6 4 0 1 2 10 3 13 5 8 14

Arbitrarily shaped wavelet tree:

- Shape given by a binary trie, represents an alphabet of strings
- We use: left trie in MAXPAIRLCP of height $h \leq \tau$ after binarisation

Standard wavelet tree [1]:

T 12 7 11 15 9 6 4 0 1 2 10 3 13 5 8 14

Arbitrarily shaped wavelet tree:

- Shape given by a binary trie, represents an alphabet of strings
- We use: left trie in MAXPAIRLCP of height $h \leq \tau$ after binarisation
- Can be constructed in $O(Nh/\sqrt{\log n}) = O(n/\sqrt{\log n})$ time if $\sigma = 2$

Standard wavelet tree [1]:

T 12 7 11 15 9 6 4 0 1 2 10 3 13 5 8 14

Arbitrarily shaped wavelet tree:

- Shape given by a binary trie, represents an alphabet of strings
- We use: left trie in MAXPAIRLCP of height $h \leq \tau$ after binarisation
- Can be constructed in $O(Nh/\sqrt{\log n}) = O(n/\sqrt{\log n})$ time if $\sigma = 2$
- MAXPAIRLCP can be solved in $O(n/\sqrt{\log n})$ time if $\ell \leq 2^{\sqrt{\log n}}$

Summary of Packed LCF

Three cases:

- Short LCF: $\ell \leq \frac{1}{3} \log_{\sigma} n$: $o(n/\log n)$ time
- Medium-length LCF $\frac{1}{5}\log_{\sigma} \leq \ell \leq 2^{\sqrt{\log n}}$: $O(n/\sqrt{\log n})$ time
- Long LCF: $\ell \ge \log^4 n$: $O(n/\log n)$ time

Summary of Packed LCF

Three cases:

- Short LCF: $\ell \leq \frac{1}{3} \log_{\sigma} n$: $o(n/\log n)$ time
- Medium-length LCF $\frac{1}{5}\log_{\sigma} \leq \ell \leq 2^{\sqrt{\log n}}$: $O(n/\sqrt{\log n})$ time
- Long LCF: $\ell > \log^4 n$: $O(n/\log n)$ time

OP: An $o(n/\sqrt{\log n})$ -time algorithm via a completely different approach? [1]

T.M. Chan, M. Patrascu: Counting Inversions, Offline Orthogonal Range Counting, and Related Problems, SODA 2010

Plan of Presentation

- Packed LCF:
 - Short LCF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

 $\leq k$ mismatches allowed in the pair of substrings

 $\leq k$ mismatches allowed in the pair of substrings

 $\leq k$ mismatches allowed in the pair of substrings

- 1-mismatch LCF in $O(n \log n)$ time [1]
- k-mismatch LCF for k = O(1) in $O(n \log^k n)$ time [2]
- k-mismatch LCF for k = O(1) in $O(n \log^{k-0.5} n)$ time [3]
- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCFs with *k* Mismatches. Inf. Process. Lett.. 2015
- [2] S.V. Thankachan, A. Apostolico, S. Aluru: A Provably Efficient Algorithm for the k-Mismatch Average Common Substring Problem. J. Comput. Biol., 2016
- [3] P. Charalampopoulos, T. Kociumaka, S.P. Pissis, ${\bf R}$: Faster Algorithms for LCF. ESA 2021

 $\leq k$ mismatches allowed in the pair of substrings

- 1-mismatch LCF in $O(n \log n)$ time [1] $\leftarrow \text{MAXPAIRLCP}$ problem
- k-mismatch LCF for k = O(1) in $O(n \log^k n)$ time [2]
- k-mismatch LCF for k = O(1) in $O(n \log^{k-0.5} n)$ time [3]
- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCFs with *k* Mismatches. Inf. Process. Lett.. 2015
- [2] S.V. Thankachan, A. Apostolico, S. Aluru: A Provably Efficient Algorithm for the *k*-Mismatch Average Common Substring Problem. J. Comput. Biol., 2016
- [3] P. Charalampopoulos, T. Kociumaka, S.P. Pissis, \mathbf{R} : Faster Algorithms for LCF. ESA 2021

 $\leq k$ mismatches allowed in the pair of substrings

- 1-mismatch LCF in $O(n \log n)$ time [1] $\leftarrow \text{MAXPAIRLCP}$ problem
- k-mismatch LCF for k = O(1) in $O(n \log^k n)$ time $[2] \leftarrow k$ -errata trees [4]
- k-mismatch LCF for k = O(1) in $O(n \log^{k-0.5} n)$ time [3]
- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCFs with k Mismatches. Inf. Process. Lett.. 2015
- [2] S.V. Thankachan, A. Apostolico, S. Aluru: A Provably Efficient Algorithm for the *k*-Mismatch Average Common Substring Problem. J. Comput. Biol., 2016
- [3] P. Charalampopoulos, T. Kociumaka, S.P. Pissis, ${\bf R}$: Faster Algorithms for LCF. ESA 2021
- [4] R. Cole, L.-A. Gottlieb, M. Lewenstein: Dictionary Matching and Indexing with Errors and Don't Cares. STOC 2004

 $\leq k$ mismatches allowed in the pair of substrings

c b b a a b c a b c a b c b a d a a b a a b c b b a

- 1-mismatch LCF in $O(n \log n)$ time [1] $\leftarrow \text{MAXPAIRLCP}$ problem
- k-mismatch LCF for k = O(1) in $O(n \log^k n)$ time $[2] \leftarrow k$ -errata trees [4]
- k-mismatch LCF for k = O(1) in $O(n \log^{k-0.5} n)$ time [3]

 \leftarrow special case of MAXPAIRLCP and string synchronizing sets

- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCFs with *k* Mismatches. Inf. Process. Lett., 2015
- [2] S.V. Thankachan, A. Apostolico, S. Aluru: A Provably Efficient Algorithm for the k-Mismatch Average Common Substring Problem. J. Comput. Biol., 2016
- [3] P. Charalampopoulos, T. Kociumaka, S.P. Pissis, ${\bf R}$: Faster Algorithms for LCF. ESA 2021
- [4] R. Cole, L.-A. Gottlieb, M. Lewenstein: Dictionary Matching and Indexing with Errors and Don't Cares. STOC 2004

 $\leq k$ mismatches allowed in the pair of substrings

c b b a a b c a b c a b c b a

daabaabcbba

OP: Faster algorithm?

- 1-mismatch LCF in $O(n \log n)$ time [1] $\leftarrow \text{MAXPAIRLCP}$ problem
- k-mismatch LCF for k = O(1) in $O(n \log^k n)$ time $[2] \leftarrow k$ -errata trees [4]
- k-mismatch LCF for k = O(1) in $O(n \log^{k-0.5} n)$ time [3]

 \leftarrow special cases of MAXPAIRLCP and string synchronizing sets

- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCFs with k Mismatches. Inf. Process. Lett., 2015
- [2] S.V. Thankachan, A. Apostolico, S. Aluru: A Provably Efficient Algorithm for the *k*-Mismatch Average Common Substring Problem. J. Comput. Biol., 2016
- [3] P. Charalampopoulos, T. Kociumaka, S.P. Pissis, **R**: Faster Algorithms for LCF. ESA 2021
- [4] R. Cole, L.-A. Gottlieb, M. Lewenstein: Dictionary Matching and Indexing with Errors and Don't Cares. STOC 2004

Approximate LCF, Large k

- $O(n^2)$ -time algorithm for k-mismatch LCF [1]
- No $O(n^{2-\epsilon})$ -time algorithm for k-mismatch LCF for $k = \Omega(\log n)$ [2]

[1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCF with k Mismatches. Inf. Process. Lett., 2015

[2] T. Kociumaka, R, T. Starikovskaya: LCF with Approximately k Mismatches. Algorithmica 2019

Approximate LCF, Large *k*

- $O(n^2)$ -time algorithm for k-mismatch LCF [1]
- No $O(n^{2-\epsilon})$ -time algorithm for k-mismatch LCF for $k = \Omega(\log n)$ [2]
- 2-approximation of k-mismatch LCF in $O(n^{4/3+o(1)})$ time [3]
- No (2ϵ) -approximation of k-mismatch LCF in $O(n^{2-\delta})$ time [2]

- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCF with k Mismatches. Inf. Process. Lett., 2015
- [2] T. Kociumaka, **R**, T. Starikovskaya: LCF with Approximately *k* Mismatches. Algorithmica 2019
- [3] G. Gourdel, T. Kociumaka, \mathbf{R} , T. Starikovskaya: Approximating LCF with k mismatches: Theory and Practice. CPM 2020

- $O(n^2)$ -time algorithm for k-mismatch LCF [1] \leftarrow DP
- No $O(n^{2-\epsilon})$ -time algorithm for k-mismatch LCF for $k = \Omega(\log n)$ [2]
- 2-approximation of k-mismatch LCF in $O(n^{4/3+o(1)})$ time [3]
- No (2ϵ) -approximation of k-mismatch LCF in $O(n^{2-\delta})$ time [2]

- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCF with k Mismatches. Inf. Process. Lett., 2015
- [2] T. Kociumaka, **R**, T. Starikovskaya: LCF with Approximately *k* Mismatches. Algorithmica 2019
- [3] G. Gourdel, T. Kociumaka, \mathbf{R} , T. Starikovskaya: Approximating LCF with k mismatches: Theory and Practice. CPM 2020

- $O(n^2)$ -time algorithm for k-mismatch LCF [1] \leftarrow DP
- No $O(n^{2-\epsilon})$ -time algorithm for k-mismatch LCF for $k = \Omega(\log n)$ [2] \leftarrow SETH
- 2-approximation of k-mismatch LCF in $O(n^{4/3+o(1)})$ time [3]
- No (2ϵ) -approximation of k-mismatch LCF in $O(n^{2-\delta})$ time [2]

- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCF with *k* Mismatches. Inf. Process. Lett., 2015
- [2] T. Kociumaka, R, T. Starikovskaya:
- LCF with Approximately k Mismatches. Algorithmica 2019
- [3] G. Gourdel, T. Kociumaka, \mathbf{R} , T. Starikovskaya: Approximating LCF with k mismatches: Theory and Practice. CPM 2020

- $O(n^2)$ -time algorithm for k-mismatch LCF [1] \leftarrow DP
- No $O(n^{2-\epsilon})$ -time algorithm for k-mismatch LCF for $k = \Omega(\log n)$ [2] \leftarrow SETH
- 2-approximation of k-mismatch LCF in $O(n^{4/3+o(1)})$ time [3]

 \leftarrow LSH via "LCF with approximately k mismatches"

• No $(2 - \epsilon)$ -approximation of k-mismatch LCF in $O(n^{2-\delta})$ time [2]

- [1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCF with *k* Mismatches. Inf. Process. Lett., 2015
- [2] T. Kociumaka, R, T. Starikovskaya:

LCF with Approximately k Mismatches. Algorithmica 2019

[3] G. Gourdel, T. Kociumaka, R, T. Starikovskaya:

Approximating LCF with k mismatches: Theory and Practice. CPM 2020

- $O(n^2)$ -time algorithm for k-mismatch LCF [1] \leftarrow DP
- No $O(n^{2-\epsilon})$ -time algorithm for k-mismatch LCF for $k = \Omega(\log n)$ [2] \leftarrow SETH
- 2-approximation of k-mismatch LCF in $O(n^{4/3+o(1)})$ time [3]

 \leftarrow LSH via "LCF with approximately k mismatches"

• No $(2-\epsilon)$ -approximation of k-mismatch LCF in $O(n^{2-\delta})$ time [2] \leftarrow SETH

[1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen:

LCF with k Mismatches. Inf. Process. Lett., 2015

[2] T. Kociumaka, R, T. Starikovskaya:

LCF with Approximately k Mismatches. Algorithmica 2019

[3] G. Gourdel, T. Kociumaka, R, T. Starikovskaya:

Approximating LCF with k mismatches: Theory and Practice. CPM 2020

- $O(n^2)$ -time algorithm for k-mismatch LCF [1] \leftarrow DP
- No $O(n^{2-\epsilon})$ -time algorithm for k-mismatch LCF for $k = \Omega(\log n)$ [2] \leftarrow SETH
- 2-approximation of k-mismatch LCF in $O(n^{4/3+o(1)})$ time [3]

 \leftarrow LSH via "LCF with approximately k mismatches"

• No $(2 - \epsilon)$ -approximation of k-mismatch LCF in $O(n^{2-\delta})$ time $[2] \leftarrow \mathsf{SETH}$

OP: Faster approximation algorithm? ([2] had $\tilde{O}(n^{3/2})$ -time algorithm)

[1] T. Flouri, E. Giaquinta, K. Kobert, E. Ukkonen: LCF with *k* Mismatches. Inf. Process. Lett., 2015

[2] T. Kociumaka, **R**, T. Starikovskaya:

LCF with Approximately k Mismatches. Algorithmica 2019

[3] G. Gourdel, T. Kociumaka, \mathbf{R} , T. Starikovskaya: Approximating LCF with k mismatches: Theory and Practice. CPM 2020

Approximate LCF, Edit Distance

- k-edit LCF in $O(n \log^k n)$ time [1]
- $k^{1.5}n^2/2^{\Omega(\sqrt{(\log n)/k})}$ -time for k-edit LCF [2]

- [1] S.V. Thankachan, C. Aluru, S.P. Chockalingam, S. Aluru: Algorithmic Framework for Approximate Matching Under Bounded Edits with Applications to Sequence Analysis. RECOMB 2018
- [2] A. Abboud, R.R. Williams, H. Yu: More Applications of the Polynomial Method to Algorithm Design. SODA 2015

Approximate LCF, Edit Distance

- k-edit LCF in $O(n \log^k n)$ time [1]
- $k^{1.5} n^2 / 2^{\Omega(\sqrt{(\log n)/k})}$ -time for k-edit LCF [2] \leftarrow polynomial method

[1] S.V. Thankachan, C. Aluru, S.P. Chockalingam, S. Aluru: Algorithmic Framework for Approximate Matching Under Bounded Edits with Applications to Sequence Analysis. RECOMB 2018

[2] A. Abboud, R.R. Williams, H. Yu: More Applications of the Polynomial Method to Algorithm Design. SODA 2015

Approximate LCF, Edit Distance

- k-edit LCF in $O(n \log^k n)$ time [1]
- $k^{1.5} n^2 / 2^{\Omega(\sqrt{(\log n)/k})}$ -time for k-edit LCF [2] \leftarrow polynomial method

OP: Faster algorithm?

[1] S.V. Thankachan, C. Aluru, S.P. Chockalingam, S. Aluru: Algorithmic Framework for Approximate Matching Under Bounded Edits with Applications to Sequence Analysis. RECOMB 2018

[2] A. Abboud, R.R. Williams, H. Yu: More Applications of the Polynomial Method to Algorithm Design. SODA 2015

Plan of Presentation

- Packed LCF:
 - Short LCF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

Small-Space LCF

- O(s) space, $\tilde{O}(n^2/s)$ time for $n^{2/3} \le s \le n$ [1]
- O(s) space, $O(n^2/s)$ time for $1 \le s \le n$ [2]
- O(s) space, $\tilde{O}(n^2/(sL))$ time for $1 \le s \le n$ where L is the LCF [3]

- [1] T. Starikovskaya and H.W. Vildhøj: Time-Space Trade-offs for the LCF Problem. CPM 2013
- [2] T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj: Sublinear Space Algorithms for the LCF Problem. ESA 2014
- [3] S. Ben-Nun, S. Golan, T. Kociumaka, M. Kraus: Time-Space Tradeoffs for Finding a Long Common Substring. CPM 2020

Small-Space LCF

- O(s) space, $\tilde{O}(n^2/s)$ time for $n^{2/3} \leq s \leq n$ [1] \leftarrow tailored
- O(s) space, $O(n^2/s)$ time for $1 \le s \le n$ [2] \leftarrow tailored
- O(s) space, $\tilde{O}(n^2/(sL))$ time for $1 \le s \le n$ where L is the LCF [3]

- [1] T. Starikovskaya and H.W. Vildhøj: Time-Space Trade-offs for the LCF Problem. CPM 2013
- [2] T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj: Sublinear Space Algorithms for the LCF Problem. ESA 2014
- [3] S. Ben-Nun, S. Golan, T. Kociumaka, M. Kraus: Time-Space Tradeoffs for Finding a Long Common Substring. CPM 2020

Small-Space LCF

- O(s) space, $\tilde{O}(n^2/s)$ time for $n^{2/3} \leq s \leq n$ [1] \leftarrow tailored
- O(s) space, $O(n^2/s)$ time for $1 \le s \le n$ [2] \leftarrow tailored
- O(s) space, $\tilde{O}(n^2/(sL))$ time for $1 \le s \le n$ where L is the LCF [3]

 \leftarrow string synchronizing sets as anchors and MAXPAIRLCP

- [1] T. Starikovskaya and H.W. Vildhøj: Time-Space Trade-offs for the LCF Problem. CPM 2013
- [2] T. Kociumaka, T. Starikovskaya, and H.W. Vildhøj: Sublinear Space Algorithms for the LCF Problem. ESA 2014
- [3] S. Ben-Nun, S. Golan, T. Kociumaka, M. Kraus: Time-Space Tradeoffs for Finding a Long Common Substring. CPM 2020

Plan of Presentation

- Packed LCF:
 - Short LCF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

Goal:

• Compute LCF of compressed strings without uncompressing them.

Goal:

• Compute LCF of compressed strings without uncompressing them.

S and T represented as **SLPs** of size n:

• $O(n^4 \log n)$ time [1]

|S| = N, **LZ77** parse of S consists of n phrases, T comes as a query, |T| = m:

- $O(n \log N)$ -sized data structure over S that computes LCF of S and T in $\tilde{O}(m)$ time w.h.p. [2]
- [1] W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, K. Hashimoto: Efficient Algorithms to Compute Compressed LCFs and Compressed Palindromes. Theor. Comput. Sci., 2009
- [2] T. Gagie, P. Gawrychowski, Y. Nekrich: Heaviest Induced Ancestors and LCFs. CCCG 2013

Goal:

• Compute LCF of compressed strings without uncompressing them.

S and T represented as **SLPs** of size n:

- $O(n^4 \log n)$ time [1] \leftarrow compressed overlaps and PREF table [3]
- |S| = N, **LZ77** parse of S consists of n phrases, T comes as a query, |T| = m:
 - $O(n \log N)$ -sized data structure over S that computes LCF of S and T in $\tilde{O}(m)$ time w.h.p. [2]
- [1] W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, K. Hashimoto: Efficient Algorithms to Compute Compressed LCFs and Compressed Palindromes. Theor. Comput. Sci., 2009
- [2] T. Gagie, P. Gawrychowski, Y. Nekrich: Heaviest Induced Ancestors and LCFs. CCCG 2013
- [3] M. Karpinski, W. Rytter, A. Shinohara: An Efficient Pattern-Matching Algorithm for Strings with Short Descriptions. Nord. J. Comput., 1997

Goal:

• Compute LCF of compressed strings without uncompressing them.

S and T represented as **SLPs** of size n:

• $O(n^4 \log n)$ time [1] \leftarrow compressed overlaps and PREF table [3]

|S| = N, **LZ77** parse of S consists of n phrases, T comes as a query, |T| = m:

- $O(n \log N)$ -sized data structure over S that computes LCF of S and T in $\tilde{O}(m)$ time w.h.p. [2]
 - ← Heaviest Induced Ancestor gueries
- [1] W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, K. Hashimoto: Efficient Algorithms to Compute Compressed LCFs and Compressed Palindromes. Theor. Comput. Sci., 2009
- [2] T. Gagie, P. Gawrychowski, Y. Nekrich: Heaviest Induced Ancestors and LCFs. CCCG 2013
- [3] M. Karpinski, W. Rytter, A. Shinohara: An Efficient Pattern-Matching Algorithm for Strings with Short Descriptions. Nord. J. Comput., 1997

• Two trees on same set of leaves $\{1, \ldots, N\}$

- ullet Two trees on same set of leaves $\{1,\ldots,N\}$
- Pair of nodes is induced if their subtrees contain a common leaf

- Two trees on same set of leaves $\{1, \dots, N\}$
- Pair of nodes is induced if their subtrees contain a common leaf
- Weighted nodes, non-decreasing weights going down

- Two trees on same set of leaves $\{1, \ldots, N\}$
- Pair of nodes is induced if their subtrees contain a common leaf
- Weighted nodes, non-decreasing weights going down
- Query: given nodes u, v, find their ancestors u', v' that are induced and have max total weight

- Two trees on same set of leaves $\{1, \ldots, N\}$
- Pair of nodes is induced if their subtrees contain a common leaf
- Weighted nodes, non-decreasing weights going down
- Query: given nodes u, v, find their ancestors u', v' that are induced and have max total weight

- Two trees on same set of leaves $\{1, \ldots, N\}$
- Pair of nodes is induced if their subtrees contain a common leaf
- Weighted nodes, non-decreasing weights going down
- Query: given nodes u, v, find their ancestors u', v' that are induced and have max total weight

- Two trees on same set of leaves $\{1, \ldots, N\}$
- Pair of nodes is induced if their subtrees contain a common leaf
- Weighted nodes, non-decreasing weights going down
- Query: given nodes u, v, find their ancestors u', v' that are induced and have max total weight

COLORED TREES = N HIA queries

- Two trees on same set of leaves $\{1, \ldots, N\}$
- Pair of nodes is induced if their subtrees contain a common leaf
- Weighted nodes, non-decreasing weights going down
- Query: given nodes u, v, find their ancestors u', v' that are induced and have max total weight

COLORED TREES = N HIA queries

- Various trade-offs for HIA queries given in [1-4], lower bound proved in [4]
- [1] T. Gagie, P. Gawrychowski, Y. Nekrich: Heaviest Induced Ancestors and LCFs. CCCG 2013
- [2] P. Abedin, S. Hooshmand, A. Ganguly, S.V. Thankachan: The Heaviest Induced Ancestors Problem Revisited. CPM 2018
- [3] P. Charalampopoulos, B. Dudek, P. Gawrychowski, K. Pokorski: Optimal Near-Linear Space Heaviest Induced Ancestors. CPM 2023
- [4] P. Charalampopoulos, P. Gawrychowski, K. Pokorski: Dynamic LCF in Polylogarithmic Time. ICALP 2020

size	query	paper
$\tilde{O}(N)$	$\Omega(\log N/\log\log N)$	[4]
O(N)	$O(\log^2 N / \log \log N)$	[2]
$O(N \log N)$	$O(\log N \log \log N)$	[2]
$O(N \log^2 N)$	$O(\log N)$	[1]
$O(N \log^{2+\epsilon} N)$	$O(\log N/\log\log N)$	[3]
$O(N^{1+\epsilon})$	O(1)	[4]

- Various trade-offs for HIA queries given in [1-4], lower bound proved in [4]
- [1] T. Gagie, P. Gawrychowski, Y. Nekrich: Heaviest Induced Ancestors and LCFs. CCCG 2013
- [2] P. Abedin, S. Hooshmand, A. Ganguly, S.V. Thankachan: The Heaviest Induced Ancestors Problem Revisited. CPM 2018
- [3] P. Charalampopoulos, B. Dudek, P. Gawrychowski, K. Pokorski: Optimal Near-Linear Space Heaviest Induced Ancestors. CPM 2023
- [4] P. Charalampopoulos, P. Gawrychowski, K. Pokorski: Dynamic LCF in Polylogarithmic Time. ICALP 2020

size	query	paper
$\tilde{O}(N)$	$\Omega(\log N/\log\log N)$	[4]
O(N)	$O(\log^2 N / \log \log N)$	[2]
$O(N \log N)$	$O(\log N \log \log N)$	[2]
$O(N \log^2 N)$	$O(\log N)$	[1]
$O(N \log^{2+\epsilon} N)$	$O(\log N/\log\log N)$	[3]
$O(N^{1+\epsilon})$	O(1)	[4]

- Various trade-offs for HIA queries given in [1-4], lower bound proved in [4]
- [1] T. Gagie, P. Gawrychowski, Y. Nekrich: Heaviest Induced Ancestors and LCFs. CCCG 2013
- [2] P. Abedin, S. Hooshmand, A. Ganguly, S.V. Thankachan: The Heaviest Induced Ancestors Problem Revisited. CPM 2018
- [3] P. Charalampopoulos, B. Dudek, P. Gawrychowski, K. Pokorski: Optimal Near-Linear Space Heaviest Induced Ancestors. CPM 2023
- [4] P. Charalampopoulos, P. Gawrychowski, K. Pokorski: Dynamic LCF in Polylogarithmic Time. ICALP 2020

size	query	paper
$\tilde{O}(N)$	$\Omega(\log N/\log\log N)$	[4]
O(N)	$O(\log^2 N / \log \log N)$	[2]
$O(N \log N)$	$O(\log N \log \log N)$	[2]
$O(N \log^2 N)$	$O(\log N)$	[1]
$O(N \log^{2+\epsilon} N)$	$O(\log N/\log\log N)$	[3]
$O(N^{1+\epsilon})$	O(1)	[4]

OP: Better trade-offs?

- Various trade-offs for HIA queries given in [1-4], lower bound proved in [4]
- [1] T. Gagie, P. Gawrychowski, Y. Nekrich: Heaviest Induced Ancestors and LCFs. CCCG 2013
- [2] P. Abedin, S. Hooshmand, A. Ganguly, S.V. Thankachan: The Heaviest Induced Ancestors Problem Revisited. CPM 2018
- [3] P. Charalampopoulos, B. Dudek, P. Gawrychowski, K. Pokorski: Optimal Near-Linear Space Heaviest Induced Ancestors. CPM 2023
- [4] P. Charalampopoulos, P. Gawrychowski, K. Pokorski: Dynamic LCF in Polylogarithmic Time. ICALP 2020

Plan of Presentation

- Packed LCF:
 - Short LCF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

c b b a a b c a b c a b c b a d a a b a a b c b b a

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

c b b a a b c a b a a b c b a d a a b a a b c b b a

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

c b b a a b c a b a a b c b a d a a b a a b c b b a

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

cbbaabcabaabcba daabacabcbba

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

cbbaabcabaabcba daabacabcbba

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

cbbaabcabaabcba daabacabcbba

- ullet $\log^{O(1)} n$ -time "after-edit" queries with $\tilde{O}(n)$ -sized data structure [1]
- fully dynamic $\tilde{O}(n^{2/3})$ -time updates [2]
- fully dynamic $\log^{O(1)} n$ amortized time substitutions [3]
- [1] A. Amir, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, **R**: LCF After One Edit Operation. SPIRE 2017
- [2] A. Amir, P. Charalampopoulos, S.P. Pissis, R: Dynamic and Internal LCF. Algorithmica 2020
- [3] P. Charalampopoulos, P. Gawrychowski, K. Pokorski: Dynamic LCF in Polylogarithmic Time. ICALP 2020

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

c b b a a b c a b a a b c b a d a a b a c a b c b b a

- $\log^{O(1)} n$ -time "after-edit" queries with $\tilde{O}(n)$ -sized data structure [1] \leftarrow HIA queries
- fully dynamic $\tilde{O}(n^{2/3})$ -time updates [2]
- fully dynamic $\log^{O(1)} n$ amortized time substitutions [3]
- [1] A. Amir, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, R: LCF After One Edit Operation. SPIRE 2017
- [2] A. Amir, P. Charalampopoulos, S.P. Pissis, R: Dynamic and Internal LCF. Algorithmica 2020
- [3] P. Charalampopoulos, P. Gawrychowski, K. Pokorski: Dynamic LCF in Polylogarithmic Time. ICALP 2020

Dynamic LCF

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

cbbaabcabaabcba daabacabcbba

- $\log^{O(1)} n$ -time "after-edit" queries with $\tilde{O}(n)$ -sized data structure [1] \leftarrow HIA queries
- fully dynamic $\tilde{O}(n^{2/3})$ -time updates [2] \leftarrow dynamic strings, MAXPAIRLCP
- fully dynamic $\log^{O(1)} n$ amortized time substitutions [3]
- [1] A. Amir, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, **R**: LCF After One Edit Operation. SPIRE 2017
- [2] A. Amir, P. Charalampopoulos, S.P. Pissis, R: Dynamic and Internal LCF. Algorithmica 2020
- [3] P. Charalampopoulos, P. Gawrychowski, K. Pokorski: Dynamic LCF in Polylogarithmic Time. ICALP 2020

Dynamic LCF

- input strings keep changing: insertions, deletions, substitutions allowed
- need to update the LCF after each operation

cbbaabcabaabcba daabacabcbba

- $\log^{O(1)} n$ -time "after-edit" queries with $\tilde{O}(n)$ -sized data structure [1] \leftarrow HIA queries
- fully dynamic $\tilde{O}(n^{2/3})$ -time updates [2] \leftarrow dynamic strings, MAXPAIRLCP
- fully dynamic $\log^{O(1)} n$ amortized time substitutions [3] \leftarrow locally cons. parsing
- [1] A. Amir, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, R: LCF After One Edit Operation. SPIRE 2017
- [2] A. Amir, P. Charalampopoulos, S.P. Pissis, R: Dynamic and Internal LCF. Algorithmica 2020
- [3] P. Charalampopoulos, P. Gawrychowski, K. Pokorski: Dynamic LCF in Polylogarithmic Time. ICALP 2020

Plan of Presentation

- Packed LCF:
 - Short I CF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

• queries about LCF of given factors of two strings

cbbaabcabcabcba daabaabcbba

• queries about LCF of given factors of two strings

c b b a a b c a b c a b c b a d a a b a a b c b b a

• queries about LCF of given factors of two strings

c b b a a b c a b c a b c b a d a a b a a b c b b a

queries about LCF of given factors of two strings

c b b a a b c a b c a b c b a d a a b a a b c b b a

factor of S	factor of <i>T</i>	space	query	comment
any	any	$\tilde{O}(n^2/t^2)$	$ ilde{O}(t)$	
any	any	$\tilde{\Omega}(n^2/t^2)$	t	clb, Set Disjointness

[1] A. Amir, P. Charalampopoulos, S.P. Pissis, R: Dynamic and Internal LCF. Algorithmica 2020

queries about LCF of given factors of two strings

c b b a a b c a b c a b c b a d a a b a a b c b b a

factor of S	factor of T	space	query	comment
any	any	$\tilde{O}(n^2/t^2)$	$ ilde{O}(t)$	
any	any	$\tilde{\Omega}(n^2/t^2)$	t	clb, Set Disjointness
prefix/suffix	prefix/suffix	$O(n \log n)$	$O(\log n)$	$O(n\log^2 n)$ constr.
any	whole T	O(n)	$O(\log n)$	O(n) constr.

[1] A. Amir, P. Charalampopoulos, S.P. Pissis, R: Dynamic and Internal LCF. Algorithmica 2020

queries about LCF of given factors of two strings

c b b a a b c a b c a b c b a d a a b a a b c b b a

factor of S	factor of T	space	query	comment
any	any	$\tilde{O}(n^2/t^2)$	$ ilde{O}(t)$	
any	any	$\tilde{\Omega}(n^2/t^2)$	t	clb, Set Disjointness
prefix/suffix	prefix/suffix	$O(n \log n)$	$O(\log n)$	$O(n\log^2 n)$ constr.
any	whole T	O(n)	$O(\log n)$	O(n) constr.

OP: Better data structures for special cases?

[1] A. Amir, P. Charalampopoulos, S.P. Pissis, R: Dynamic and Internal LCF. Algorithmica 2020

Summary

- Packed LCF:
 - Short LCF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF

Other Variants of LCF

Longest common Abelian factor (LCAF) [1-5]

- [1] A. Alatabbi, C.S. Iliopoulos, A. Langiu, and M.S. Rahman: Algorithms for LCAFs. Int. J. Found. Comput. Sci., 2016
- [2] G. Badkobeh, T. Gagie, S. Grabowski, Y. Nakashima, S.J. Puglisi, and S. Sugimoto: LCAFs and large alphabets. SPIRE 2016
- [3] S. Sugimoto, N. Noda, S. Inenaga, H. Bannai, M. Takeda: Computing Abelian String Regularities Based on RLE. IWOCA 2017
- [4] S. Grabowski: Regular Abelian Periods and LCAFs on Run-Length Encoded Strings. **SPIRE 2017**
- [5] S. Grabowski, T. Kociumaka, **R**: On LCAF with and without RLE, Fundam, Informaticae, 2018

Other Variants of LCF

- Longest common Abelian factor (LCAF) [1-5]
- Longest common order-preserving factor [6]
- [1] A. Alatabbi, C.S. Iliopoulos, A. Langiu, and M.S. Rahman: Algorithms for LCAFs. Int. J. Found. Comput. Sci., 2016
- [2] G. Badkobeh, T. Gagie, S. Grabowski, Y. Nakashima, S.J. Puglisi, and S. Sugimoto: LCAFs and large alphabets. SPIRE 2016
- [3] S. Sugimoto, N. Noda, S. Inenaga, H. Bannai, M. Takeda: Computing Abelian String Regularities Based on RLE. IWOCA 2017
- [4] S. Grabowski: Regular Abelian Periods and LCAFs on Run-Length Encoded Strings. SPIRE 2017
- [5] S. Grabowski, T. Kociumaka, R: On LCAF with and without RLE. Fundam. Informaticae, 2018
- [6] M. Crochemore, C.S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S.P. Pissis, **R**, W. Rytter, T. Waleń: Order-preserving indexing. Theor. Comput. Sci., 2016

Other Variants of LCF

- Longest common Abelian factor (LCAF) [1-5]
- Longest common order-preserving factor [6]
- Longest common circular factor (LCCF) [7]
- [1] A. Alatabbi, C.S. Iliopoulos, A. Langiu, and M.S. Rahman: Algorithms for LCAFs. Int. J. Found. Comput. Sci., 2016
- [2] G. Badkobeh, T. Gagie, S. Grabowski, Y. Nakashima, S.J. Puglisi, and S. Sugimoto: LCAFs and large alphabets. SPIRE 2016
- [3] S. Sugimoto, N. Noda, S. Inenaga, H. Bannai, M. Takeda: Computing Abelian String Regularities Based on RLE. IWOCA 2017
- [4] S. Grabowski: Regular Abelian Periods and LCAFs on Run-Length Encoded Strings. **SPIRE 2017**
- [5] S. Grabowski, T. Kociumaka, R: On LCAF with and without RLE, Fundam, Informaticae, 2018
- [6] M. Crochemore, C.S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S.P. Pissis, R, W. Rytter, T. Walen: Order-preserving indexing. Theor. Comput. Sci., 2016
- [7] M. Alzamel, M. Crochemore, C.S. Iliopoulos, T. Kociumaka, R, W. Rytter, J. Straszyński, T. Waleń, W. Zuba: Quasi-Linear-Time Algorithm for LCCF. CPM 2019

Summary

- Packed LCF:
 - Short I CF
 - Long LCF
 - Medium-length LCF
- Approximate LCF
- Small-space LCF
- Compressed LCF
- Dynamic LCF
- Internal LCF
- Other variants of LCF