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Sequencing a genome
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>read1
ACCGGCAGCAGTCTCAGCATGACTCGATCGCGAGCAT
>read2
CGGCATCGTGGATCGCAGGAGTACGATCGTCAGAGTA
…
…
…
…
>read500,000000
CGTACGCAGGCAGCGGCATCAATGACTGTGTGTGTCA

One “run” (12h):
300GB raw data

Three runs:
1TB. One laptop



Sequencing a metagenome
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>read1
ACCGGCAGCAGTCTCAGCATGACTCGATCGCGAGCAT
>read2
CGGCATCGTGGATCGCAGGAGTACGATCGTCAGAGTA
…
…
…
…
>read500,000000
CGTACGCAGGCAGCGGCATCAATGACTGTGTGTGTCA

One “run” (12h):
300GB raw data

Three runs:
1TB. One laptop

100000 species



Which data?
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Raw sequences

• Fragmented data

• Error-prone (1% to 10% error rate)

• Important background noise

• Heterogenous

• Quality and quantity

• Volumes:

• hundreds millions fragments  / experiment

• Millions of experiments

• Archived

51 petabytes

doubles: <2 

years
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Objectives

Index
• Genomic datasets:

• Large 
• > hundreds, thousand samples
• TB to PB sized

• Complex
• metagenomes, metatranscriptomes, 
• high variability (sea water, soil, …)

• With:
• Low RAM usage 

• (max 100 GB)
• Dynamicity 

• Able to add new samples to the index
• Fast

• Indexing hundreds of samples in a few hours

Query
• Short (reads) or long (genomes) sequences

• One sequence (google-like)
• Real time (milliseconds)
• No RAM

Or
• Many sequences (read set)

• Fast (~hours)
• RAM limited (max 100 GB)

• With or without abundance

At the price of 
• Approximate answers (FP, overestimations)
• Need fast disk (local SSD preferentially)
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Genomic research engine: conceptual view
kmers
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Words
• No word in DNA

• Split to subsequences of fixed length k

(called kmers) 

(20 < k < 40)

• Thousand billions distinct kmers

• (google indexes millions)

Compare sequences

• Sequence similarity ~ shared kmers count

ACGAGGTACGA ACGAGTTACGA
ACGA ACGA
CGAG CGAG
GAGG GAGT
AGGT AGTT
GGTA GTTA
GTAC TTAC
TACG TACG
ACGA ACGA

• 4 over 8 kmers shared



Genomic research engine: conceptual view
kmers
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Words
• No word in DNA

• Split to subsequences of fixed length k

(called kmers) 

(20 < k < 40)

• Thousand billions distinct kmers

• (google indexes millions)

Query vs Bank

• Sequence similarity ~ shared kmers count

ACGAGGTACGA BANK
ACGA
CGAG
GAGG
AGGT
GGTA
GTAC
TACG
ACGA

• 6 over 8 kmers shared

CATGACGATC

ACG
GCA

TC

GGCAGTT

ACGGAGATTC

CAGGGAGT
CA

CAGGATCG

ACGGCATT

TCGAGGTG

GG
GT
TG



Genomic research engine: conceptual view
index
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Set representation

• A bank (genome, reads, …) represented by its kmer 

content

Atomic question

• Given a queried kmer, does it exist in the indexed set?

kmer: ACGGATC…GACTCAA Yes or No



Genomic research engine: conceptual view
index
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Set representation

• A bank (genome, reads, …) represented by its kmer 

content

Atomic question

• Given a queried kmer, in which sets does it exist?

kmer: ACGGATC…GACTCAA

Set
42
58
…
1928



Genomic research engine: conceptual view
index
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Set representation

• A bank (genome, reads, …) represented by its kmer 

content

Atomic question

• Given a queried kmer, in which sets, with which abundance?

kmer: ACGGATC…GACTCAA

Set Abundance
42 1
58 23
… …
1928 4



Bloom Filter

A bit vector B of fixed size
Add one element -> hash(element) -> set B[hash] = 1
Query one element -> hash(element)  -> returns B[hash]

0: absent
1: present (possibly a False Positive)

1 0 0 1 0 0 1 1

counting Bloom Filter

A bit vector B of fixed size, x bits per element
Add one element -> hash(element) -> B[hash] += 1
Query one element -> hash(element)  -> returns B[hash]

0: absent
n>0: present with non null False Positive Rate
n: abundance (possibly overestimated)
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: A bloom filter



Indexing: conceptual view

One read set: 
• Extract & count kmers
• Filter kmers
• Generate a [counting] bloom 

filter

Reads
>read1
ACGAG…ACGTA
>read2
ACGGC…GGACT
…
>read1000000
GGCGA…AGATA

Counted 
kmers

AAAAAC 12
ACCATA 4
AGGTAT 1
…
TCGGAT 5

cBloom
Filter

0
12 
4
… 
0
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Indexing: conceptual view

One read set: 
• Extract & count kmers
• Filter kmers
• Generate a [counting] bloom 

filter

N read sets: 
• Create N [counting] bloom filters
• This is the index

Reads
>read1
ACGAG…ACGTA
>read2
ACGGC…GGACT
…
>read1000000
GGCGA…AGATA

Counted 
kmers

AAAAAC 12
ACCATA 4
AGGTAT 1
…
TCGGAT 5

cBloom
Filters

0  8   3   8
12 0   13  0
4  7   6   0
…  …   …   …
0  24  2   9

Reads
>read1
ACGAG…ACGT
…
>read1000000
GGCGA…AGAT

Reads
>read1
GCGAG…ACGT
…
>read1000000
AGCGA…AGAT

Reads
>read1
CCGAG…ACGT
…
>read1000000
TGCGA…AGAT

Reads
>read1
ACGAG…ACGT
…
>read1000000
GGCGA…AGAT

cBloom
Filter

0
12 
4
… 
0
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Querying: conceptual view
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cBloom
Filters

0  8   3   8
12 0   13  0
4  7   6   0
…  …   …   …
0  24  2   9

ACGAGGTACGA
ACGA
CGAG
GAGG
AGGT
GGTA
GTAC
TACG
ACGA

Sequence

kmers
Abundance of 

each kmer in each 

indexed dataset

Approximate 

abundance of 

ACGAGGTACGA in 

each indexed 

dataset



Possible 
today ?

From Marchet, C., et al. Genome Research 2021.
Update by Marchet, C. Montpellier 2022.

Fast (indexing + query)
• No random access 

à no tree

Low memory
• Do not raise index in RAM

at indexing or query time

High complexity 
• Do not require unitigs (next slides)
• No not associate k-mers to color vector

Note 
theoretical complexity != practical speed
(modern compilers)

-03

Note (even more knowing that many of the authors of these tools are in the room J )
These tools are not adapted to our objectives (prev. slide) but
Adapted to other contexts, and have other features (alignments, variants, …)

Other tools: 
• ggcat – endless query (debug in progress)
• Needle – Not precise enough
• PebbleScout – endless indexing 16



Cannot use unitigs

• On complex data, unitigs do not 
help

• Example on a Tara Ocean sample 
(complex marine metagenome), 
k=28
• 213 millions unitigs
• average length 42
• Requires 3h20 to compute 

(bcalm [1])
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Figure from Marchet, C., Sneak peek at the -tigs!

[1] Chikhi, R., Limasset, A., & Medvedev, P. (2016). Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics, 32(12), i201-i208.



Proposed solution
fimpera + kmindex



Two contributions

[Counting] Bloom Filters

• Exponential decrease of Bloom filter FPrate
• Decrease of counting Bloom Filter 

overestimations

From reads to Indexes

• Optimized kmer index:
• Representation
• Creation
• Update
• Query

Lucas Robidou Téo Lemane

Lemane T. et. al. “kmindex and ORA: indexing and real-time user-
friendly queries in terabytes-sized highly complex genomic datasets”
https://www.biorxiv.org/content/10.1101/2023.05.31.543043v2
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Robidou, L, Peterlongo P. "fimpera: drastic improvement of Approximate 
Membership Query data-structures with counts." Bioinformatics 39.5 
(2023) doi: https://doi.org/10.1101/2022.06.27.497694



Fimpera: Counting BF with low disk, low FP, 
low counting overestimates, no drawback

key idea for presence absence:
• If a kmer exists all words inside this 

kmer (smers) exist

• If a smer of a kmer does not exist, the 
kmer does not exist

In practice: 
• Index smers
• When querying a kmer, report it as 

present iif all its constituent smers are 
present

z = k-s

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera
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Fimpera: compared to x hash 
functions in a Bloom Filter 

z = k-s

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera
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x

L x accesses
L Caches misses
L Saturates the filter

https://www.di-mgt.com.au/bloom-filter.html

David Eppstein — self-made, originally for a talk at WADS 2007

https://commons.wikimedia.org/wiki/User:David_Eppstein
http://www.ics.uci.edu/~eppstein/pubs/EppGoo-WADS-07.pdf


Fimpera: Counting BF with low disk, low FP, 
low counting overestimates, no drawback

key idea for presence absence:
• If a kmer exists all words inside this 

kmer (smers) exist

• If a smer of a kmer does not exist, the 
kmer does not exist

In practice: 
• Index smers
• When querying a kmer, report it as 

present iif all its constituent smers are 
present

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera
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z = k-s



Fimpera: Counting BF with low disk, low FP, 
low counting overestimates, no drawback

key idea for presence absence:
• If a kmer exists all words inside this 

kmer (smers) exist

• If a smer of a kmer does not exist, the 
kmer does not exist

In practice: 
• Index smers
• When querying a kmer, report it as 

present iif all its constituent smers are 
present

Lucas Robidou https://github.com/lrobidou/fimpera
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Save query time



Fimpera: Counting BF with low disk, low FP, 
low counting overestimates, no drawback

key idea for abundance:
• The abundance of a kmer is at most the 

abundance of its less abundant 
constituent smer

In practice: 
• Index smers abundances
• When querying a kmer, return the 

abundance of its least abundant smer

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera
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Fimpera: Counting BF with low disk, low FP, 
low counting overestimates, no drawback

key idea for abundance:
• The abundance of a kmer is at most the 

abundance of its less abundant 
constituent smer

In practice: 
• Index smers abundances
• When querying a kmer, return the 

abundance of its least abundant smer

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera

Without Fimpera, the same precision 

would require ~35x times more space 
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Kmindex: indexation and real-time query 
of kmers in terabyte-sized genomic data 
banks

key features
• 1st of all: 
• kmers -> sorted hash values

• Count hashes instead of ascii kmers
• Clever kmer filtration process 
• Kmers -> partition -> parallelization
• At indexing time
• At query time

Téo Lemane

Lemane, T., Medvedev, P., Chikhi, R., & Peterlongo, P.  Bioinformatics Advances, 2(1), vbac029.
Based on kmtricks :

key features
• simple inverted index
• mmap at query time 
• Clever pages in RAM management

• Integrates Fimpera

https://github.com/tlemane/kmindex
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kmindex main technical ideas

Avoid branching in the code
• Fimpera: can skip query positions
• Theoretical advantage

28



kmindex main technical ideas

Avoid branching in the code
• Fimpera: can skip query positions
• Good idea? – small experiment

29

b: 
• 1 billion Booleans
• 10% are ”false” randomly distributed

~5.2 times 
less calls to 

“square”



RESULTS

30Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., ... & Searson, S. (2015). Open science resources 
for the discovery and analysis of Tara Oceans data. Scientific data, 2(1), 1-16.



Result: Index construction

Indexing: one command line
kmindex files |smer| |bloom|

(23)    (30billions)

• Wall clock time: 2h56
• Peak RAM: 107GB
• Peak disk: 878GB
• Final index size: 164GB

Databank: 
• 50 Tara Ocean samples 
• Avg 11 billions distinct kmers per sample
• 1.4TB fastq.gz

Tara Schooner - Creative Commons Attribution 3.0
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Result:  query

querying: one command line: `kmindex query index query.fa`

Databank: 
• 50 Tara Ocean samples 
• Avg 11 billions distinct kmers per sample
• 1.4TB fastq.gz

#queries (reads) 1 10k 1 million 10 millions

Max RAM (GB) 0.005 0.05 4.9 46.7

Time (s) – cold RAM <0.1 20 94 261 (4m21s)

Time (s) – warm RAM <0.1 10.84 41 227

#queries (reads) 1 10k 1 million 10 millions

Max RAM (GB) 0.005 2.84 133 194

Time (s) – cold RAM <0.1 17 61 99

Time (s) – warm RAM <0.05 7 16 64

“rocket mode”
Use as much RAM 
as available
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Comparative results
Databank: 

• 50 Tara Ocean samples 
• Avg 11 billions distinct kmers per sample
• 1.4TB fastq.gz

Build

Query
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ORA Server
https://ocean-read-atlas.mio.osupytheas.fr/

Index: all Tara Ocean Metagenomic samples (no abundance yet)
• Input fastq.gz files 
• 282 TB
• 1,393 samples 

• Final index size: 36TB
• Each sample:
• Position
• Species fraction sizes
• Physico-chemical env.:

• Ph, salinity, T°, …
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https://ocean-read-atlas.mio.osupytheas.fr/


To conclude
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Take home messages
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and practical considerations

If you want to scale up to big and complex data, consider:  
• Limited access to RAM 
• No cache misses
• Avoid branching in code

Suggestion: 
Include these considerations in addition to theoretical 
complexity analyses 

“compiled” complexity



What comes next?
• From TB to PB

• Less disk <-> More Time

• Answers from 0.01s to 0.1s is ok
• Compress lines of the inverted indexes

• RRR, LZ, grammars, … ?

Disk

Time

TODAY 

Disk

Time

FUTURE

Limitations
• Not adapted to many “simple” samples
• Requires fast and local disk
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Thanks J

https://github.com/tlemane/kmindex
https://github.com/lrobidou/fimpera

https://ocean-read-atlas.mio.osupytheas.fr/
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