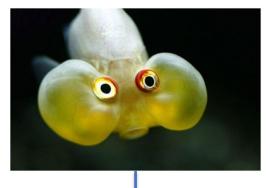
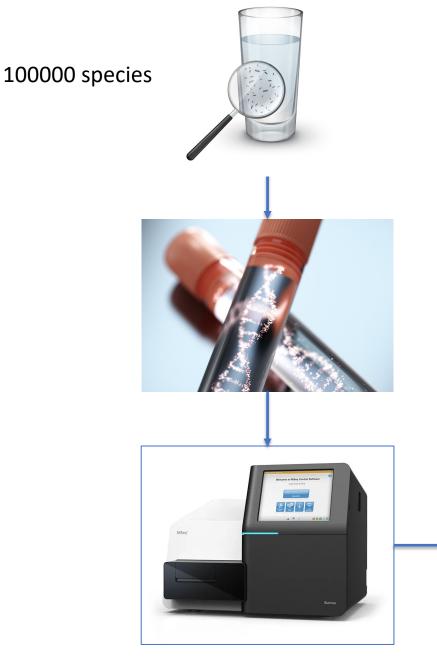


Indexing Large Metagenomic Projects Application to the Tara Oceans Datasets

©Antoine Doré Illustration


Téo Lemane, Lucas Robidou, Rayan Chikhi, Pierre Peterlongo


Sequencing a genome

>read1
ACCGGCAGCAGTCTCAGCATGACTCGATCGCGAGCAT
>read2
CGGCATCGTGGATCGCAGGAGTACGATCGTCAGAGTA
...
...
...
...
...
>read500,00000
CGTACGCAGGCAGCGGCATCAATGACTGTGTGTCA

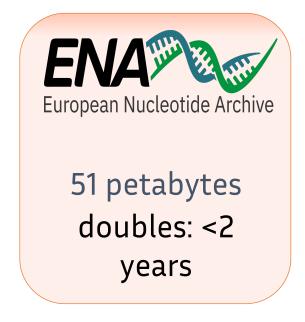
One "run" (12h): 300GB raw data

Three runs: 1TB. One laptop

Sequencing a metagenome

>read1
ACCGGCAGCAGTCTCAGCATGACTCGATCGCGAGCAT
>read2
CGGCATCGTGGATCGCAGGAGTACGATCGTCAGAGTA
...
...
...
...
...
>read500,00000
CGTACGCAGGCAGCGGCATCAATGACTGTGTGTCA

One "run" (12h): 300GB raw data


Three runs: 1TB. One laptop

Which data?

Raw sequences

- Fragmented data
- Error-prone (1% to 10% error rate)
 - Important <u>background noise</u>
- Heterogenous
 - Quality and quantity
- <u>Volumes</u>:
 - hundreds millions fragments / experiment
 - Millions of experiments
- <u>Archived</u>

Google							
	🔍 All 🖫 Images 🛷 Shopping 🕞 Videos 📀 Maps 🚦 More 🛛 🛛 Tools						
	About 0 results (0.18 seconds)						
	Your search - AGGGGCTGAGCGGCGGGCAGGCAGCTTTCAGGGACTCAGTTCTACA - did not match any documents.						

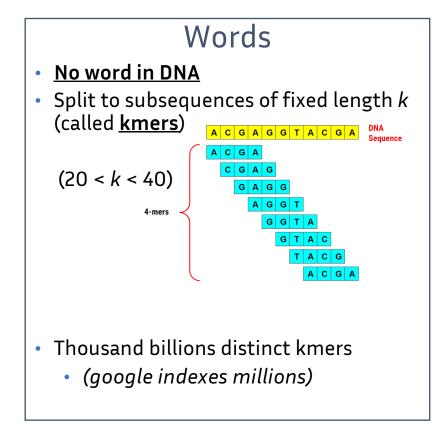
Objectives

Index

- Genomic datasets:
 - Large
 - > hundreds, thousand samples
 - TB to PB sized
 - <u>Complex</u>
 - metagenomes, metatranscriptomes,
 - high variability (sea water, soil, ...)
- With:
 - Low RAM usage
 - (max 100 GB)
 - Dynamicity
 - Able to add new samples to the index
 - Fast
 - Indexing hundreds of samples in a few hours

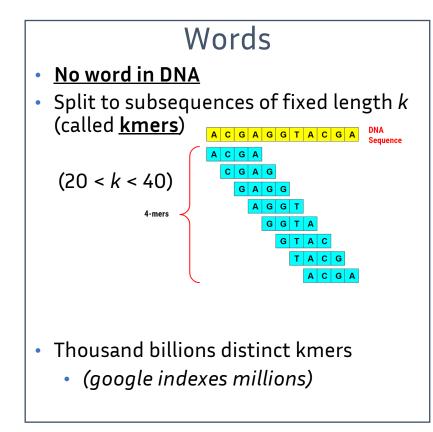
At the price of

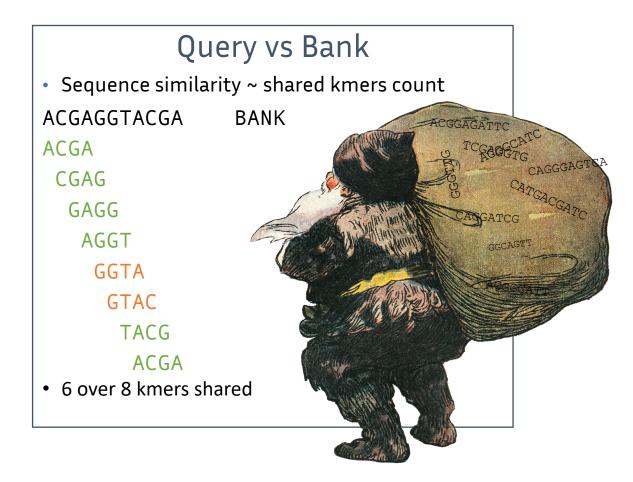
- Approximate answers (FP, overestimations)
- Need fast disk (local SSD preferentially)


Query

- Short (reads) or long (genomes) sequences
- One sequence (google-like)
 - Real time (milliseconds)
 - No RAM

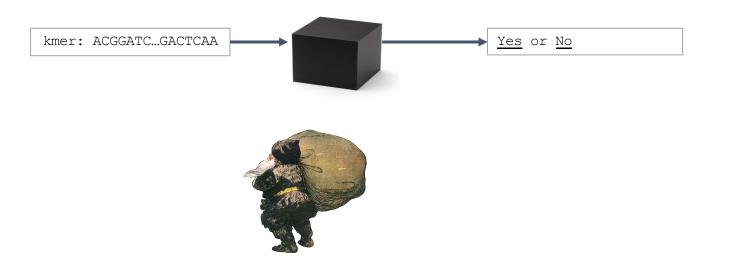
Or


- Many sequences (read set)
 - Fast (~hours)
 - RAM limited (max 100 GB)
- With or without abundance


Genomic research engine: conceptual view kmers

Compare sequences				
Sequence simila	rity ~ shared kmers count			
ACGAG <u>G</u> TACGA	ACGAG <mark>T</mark> TACGA			
ACGA	ACGA			
CGAG	CGAG			
GAGG	GAGT			
AGGT	AGTT			
GGTA	GTTA			
GTAC	TTAC			
TACG	TACG			
ACGA	ACGA			
4 over 8 kmers sh	nared			

Genomic research engine: conceptual view kmers

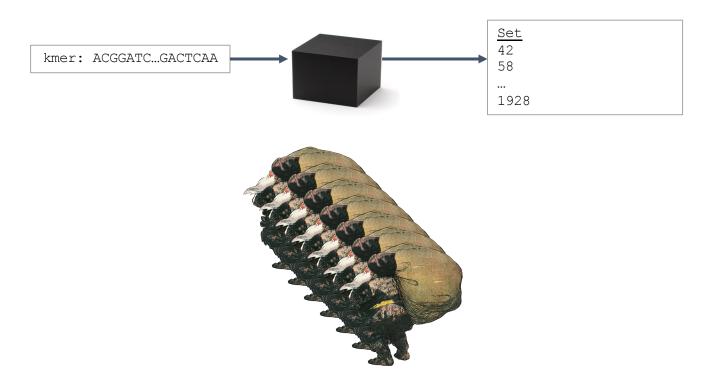

Genomic research engine: conceptual view index

Set representation

 A bank (genome, reads, ...) represented by its kmer content

Atomic question

• Given a queried kmer, <u>does it exist</u> in the indexed set?

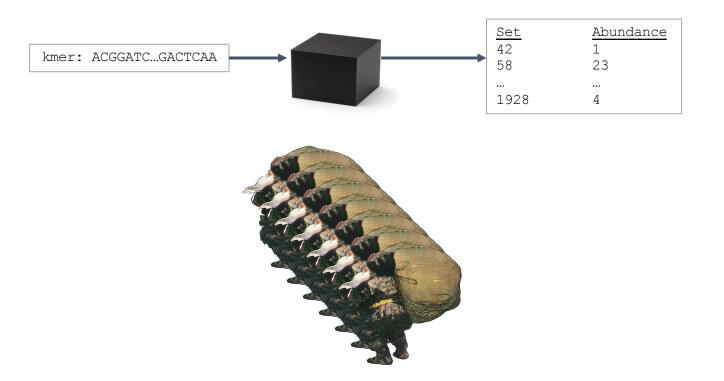

Genomic research engine: conceptual view index

Set representation

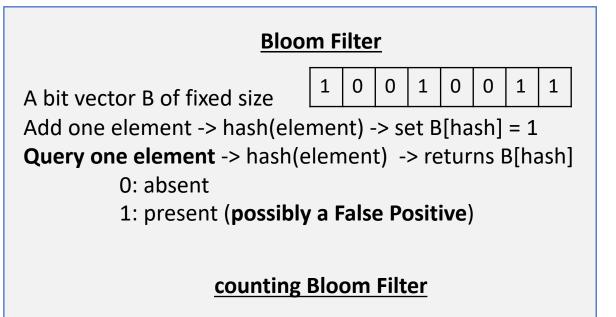
 A bank (genome, reads, ...) represented by its kmer content

Atomic question

• Given a queried kmer, in <u>which sets</u> does it exist?


Genomic research engine: conceptual view index

Set representation


 A bank (genome, reads, ...) represented by its kmer content

Atomic question

• Given a queried kmer, in <u>which sets</u>, with <u>which abundance</u>?

A bit vector B of fixed size, x bits per element Add one element -> hash(element) -> B[hash] += 1 Query one element -> hash(element) -> returns B[hash] 0: absent n>0: present with non null False Positive Rate n: abundance (possibly overestimated)

Indexing: conceptual view

One read set:

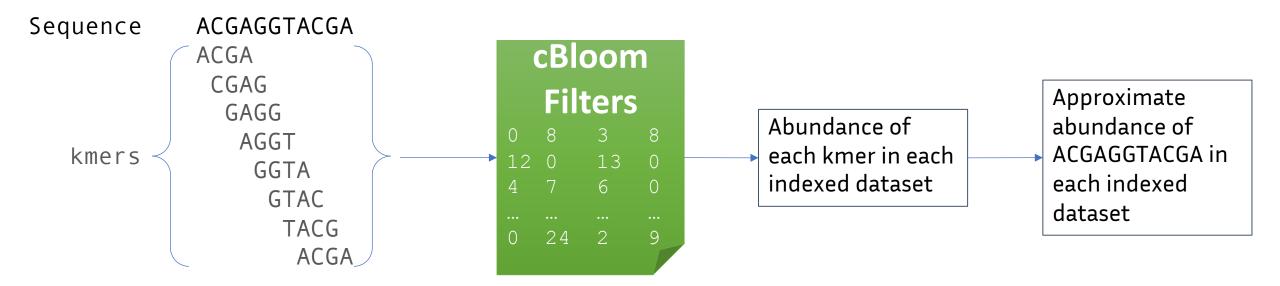
- Extract & count kmers
- Filter kmers
- Generate a [counting] bloom filter

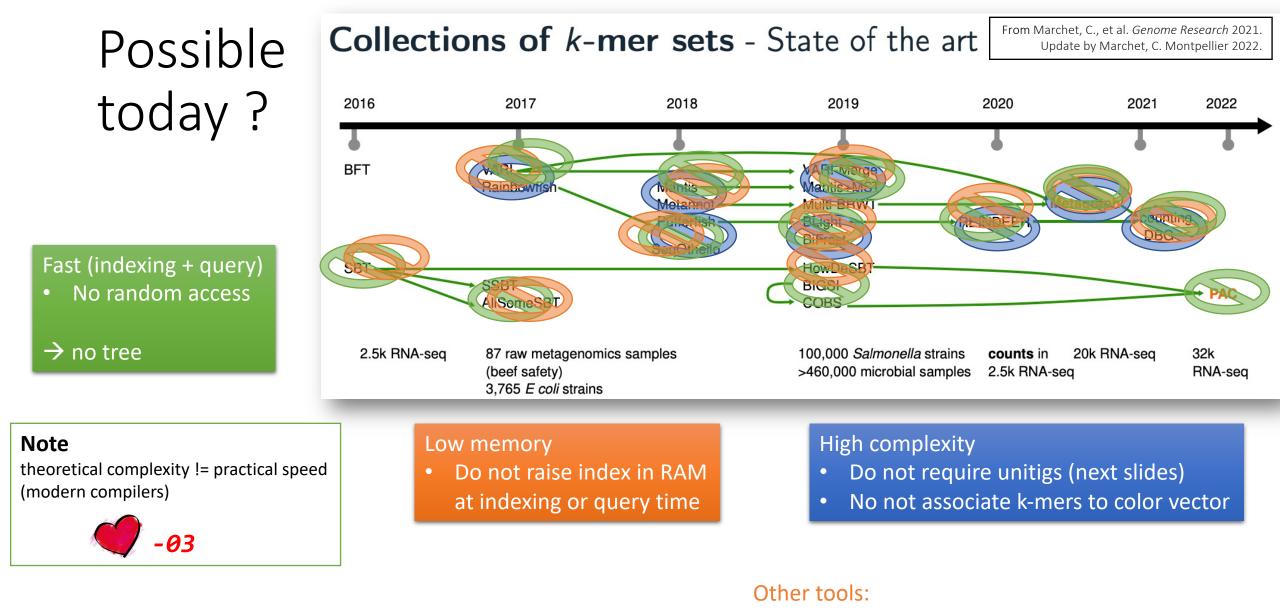
Reads	Counted	cBloom
>read1 ACGAGACGTA	kmers	Filter
>read2	AAAAAC 12	0
ACGGCGGACT	ACCATA 4	12
	AGGTAT 1	4
>read1000000		
GGCGAAGATA	TCGGAT 5	0

Indexing: conceptual view

One read set:

- Extract & count kmers
- Filter kmers
- Generate a [counting] bloom filter

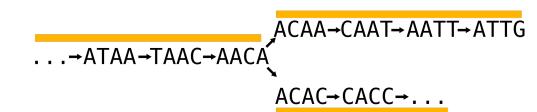

Reads	Counted	cBloom
>read1 ACGAGACGTA	kmers	Filter
>read2	AAAAAC 12	0
ACGGCGGACT	ACCATA 4	12
	AGGTAT 1	4
>read1000000		
GGCGAAGATA	TCGGAT 5	0

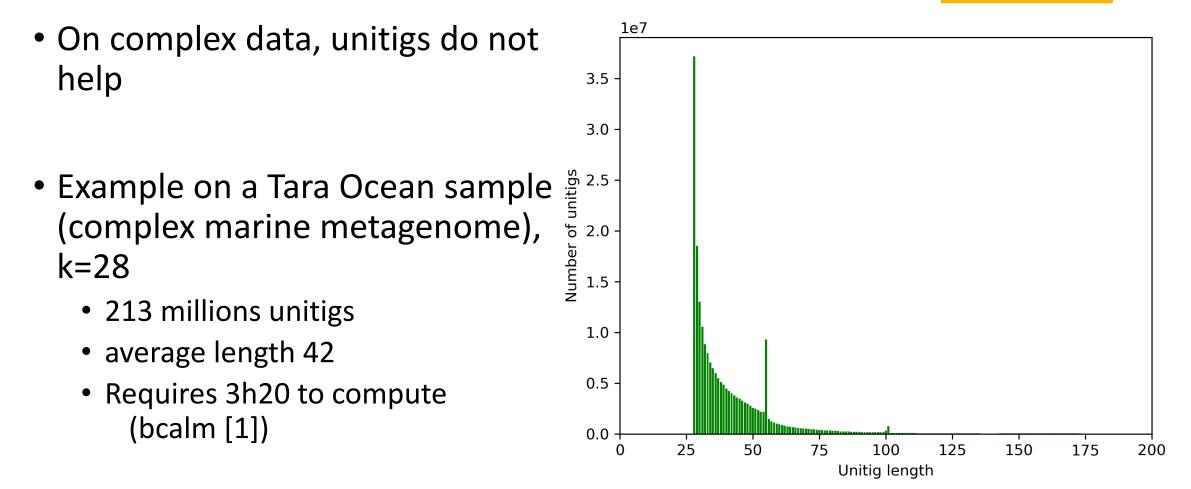

N read sets:

- Create N [counting] bloom filters
- This is the index

Querying: conceptual view

- ggcat endless query (debug in progress)
- **Needle** Not precise enough
- PebbleScout endless indexing


Note (even more knowing that many of the authors of these tools are in the room B)


These tools are not adapted to our objectives (prev. slide) but

Adapted to other contexts, and have other features (alignments, variants, ...)

unitigs (node centric)

Cannot use unitigs

Proposed solution

fimpera + kmindex

Two contributions

[Counting] Bloom Filters

Lucas Robidou

- Exponential decrease of Bloom filter FPrate
- Decrease of counting Bloom Filter overestimations

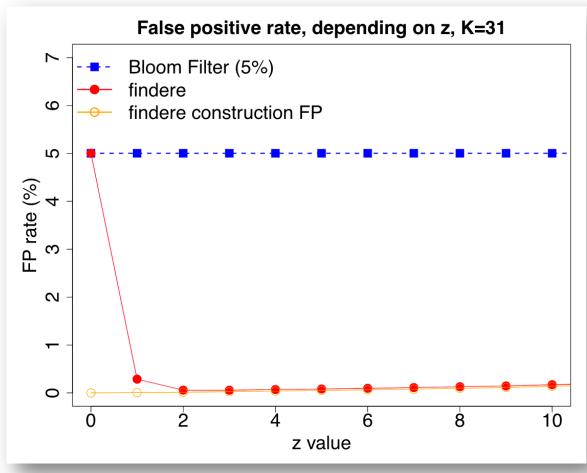
From reads to Indexes

Téo Lemane

- Optimized kmer index:
 - Representation
 - Creation
 - Update
 - Query

Robidou, L, Peterlongo P. "fimpera: drastic improvement of Approximate Membership Query data-structures with counts." Bioinformatics 39.5 (2023) doi: https://doi.org/10.1101/2022.06.27.497694

Lemane T. et. al. "*kmindex and ORA: indexing and real-time userfriendly queries in terabytes-sized highly complex genomic datasets*" https://www.biorxiv.org/content/10.1101/2023.05.31.543043v2


Fimpera: Counting BF with low disk, low FP, low counting overestimates, no drawback

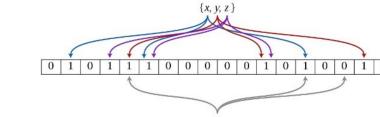
key idea for presence absence:

- If a kmer exists all words inside this kmer (smers) exist
- If a smer of a kmer does not exist, the kmer does not exist

In practice:

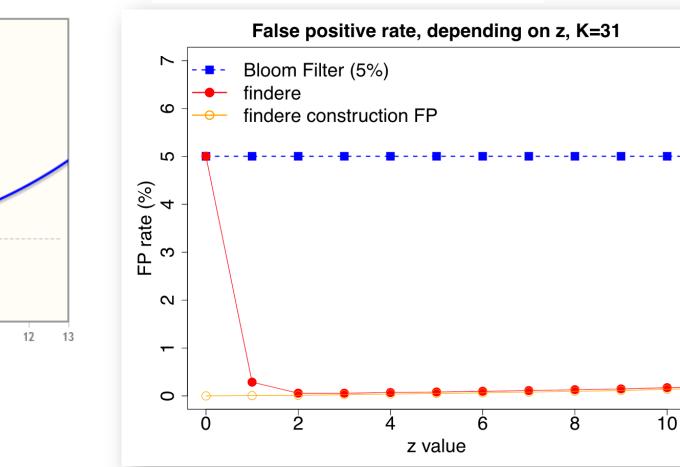
- Index smers
- When querying a kmer, report it as present *iif* all its constituent smers are present

z = k-s


Fimpera: compared to x hash

functions in a Bloom Filter

oni i obidou i inipera


z

David Eppstein — self-made, originally for a talk at WADS 2007

Bloom Filter

 $[\]ensuremath{\mathfrak{S}}$ Caches misses

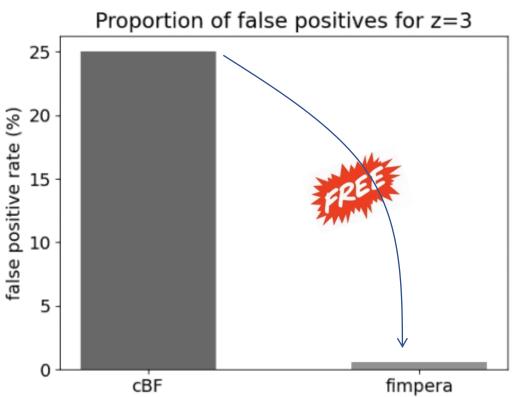
 $\ensuremath{\mathfrak{S}}$ Saturates the filter

Fimpera: Counting BF with low disk, low FP, low counting overestimates, no drawback

key idea for presence absence:

• If a kmer exists all words inside this kmer (smers) exist

• If a smer of a kmer does not exist, the


In practice:

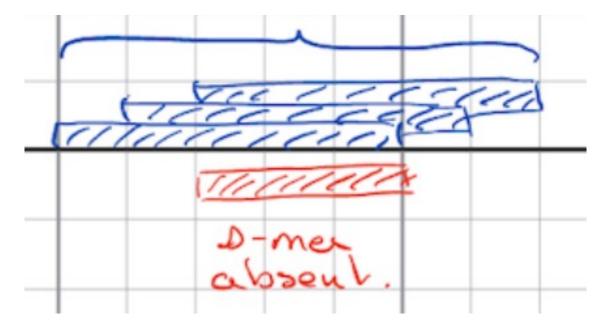
• Index smers

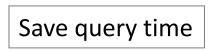
kmer does not exist

 When querying a kmer, report it as present *iif* all its constituent smers are present

Indexed: Tara Ocean ERR1726642 Queried: Tara Ocean ERR4691696

Lucas Robidou O https://github.com/lrobidou/fimpera


Fimpera: Counting BF with low disk, low FP, low counting overestimates, no drawback

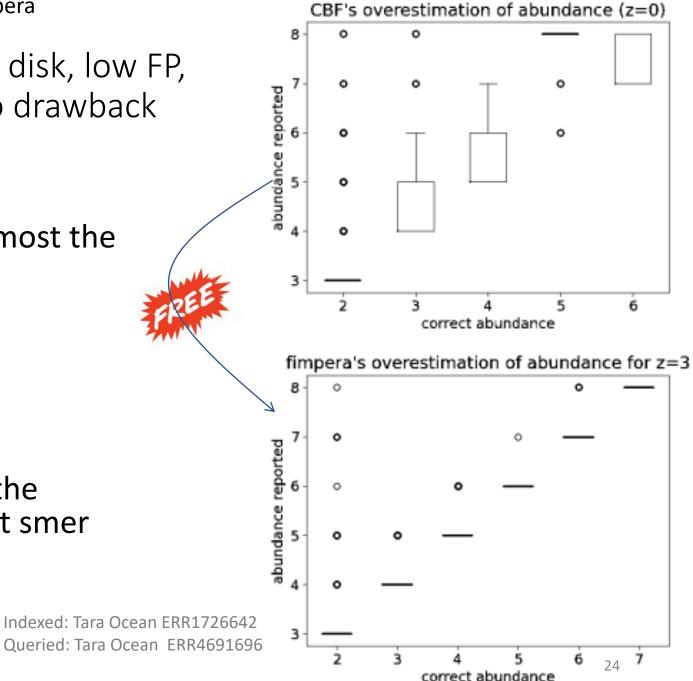

key idea for presence absence:

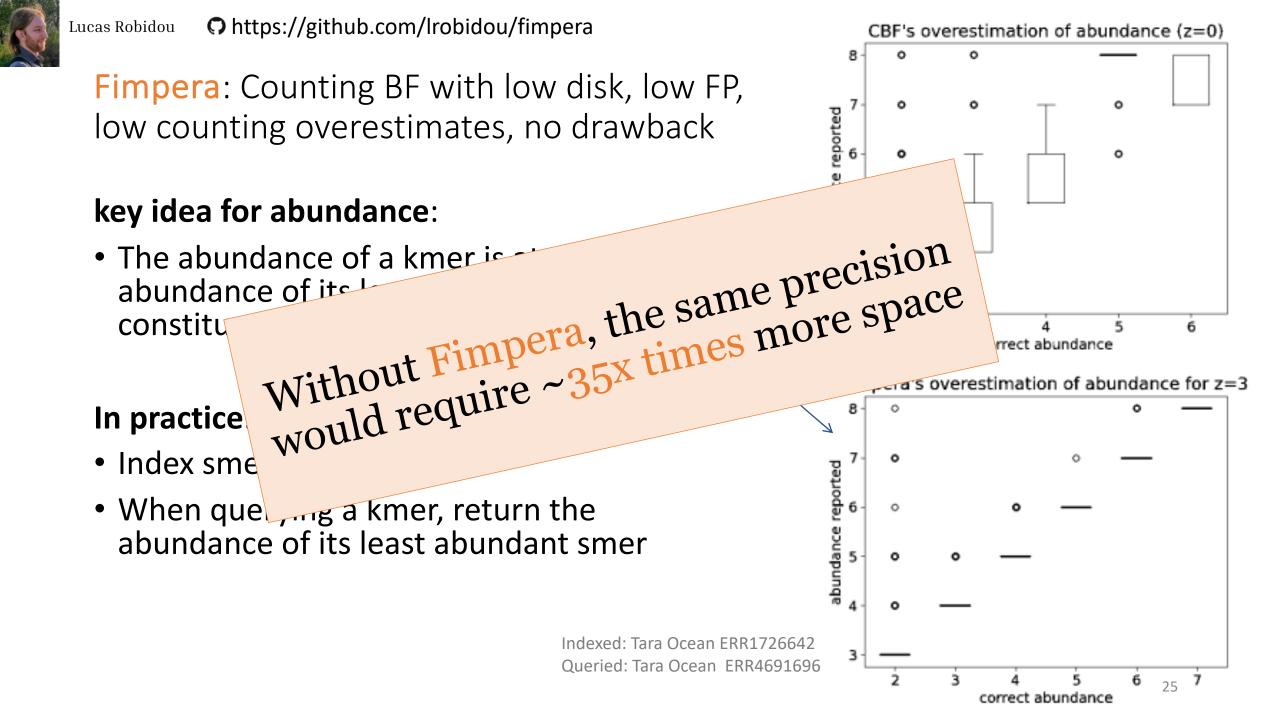
- If a kmer exists all words inside this kmer (smers) exist
 - \longleftrightarrow
- If a smer of a kmer does not exist, the kmer does not exist

In practice:

- Index smers
- When querying a kmer, report it as present *iif* all its constituent smers are present

Lucas Robidou **O** https://github.com/lrobidou/fimpera


Fimpera: Counting BF with low disk, low FP, low counting overestimates, no drawback


key idea for abundance:

 The abundance of a kmer is at most the abundance of its less abundant constituent smer

In practice:

- Index smers abundances
- When querying a kmer, return the abundance of its least abundant smer

Téo Lemane

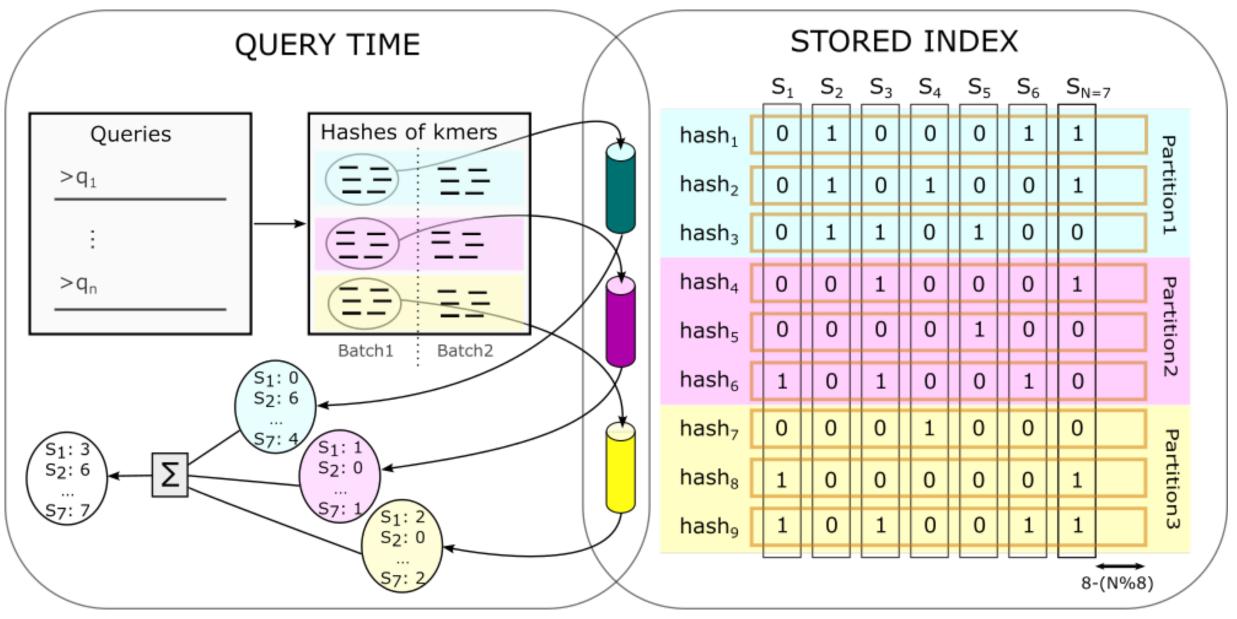
O https://github.com/tlemane/kmindex Kmindex: indexation and real-time query of kmers in terabyte-sized genomic data banks

key features

- 1st of all:
 - kmers -> sorted hash values
- Count hashes instead of ascii kmers
- Clever kmer filtration process
- Kmers -> partition -> parallelization
 - At indexing time
 - At query time

key features

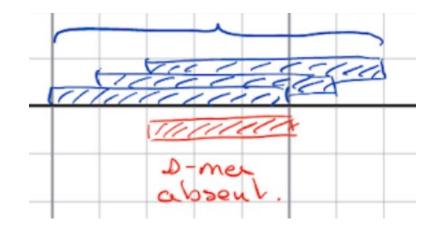
- simple inverted index
- mmap at query time
 - Clever pages in RAM management


QUERY TIME

Hashes of kmers

• Integrates Fimpera

Based on kmtricks :


Lemane, T., Medvedev, P., Chikhi, R., & Peterlongo, P. Bioinformatics Advances, 2(1), vbac029.

kmindex main technical ideas

Avoid branching in the code

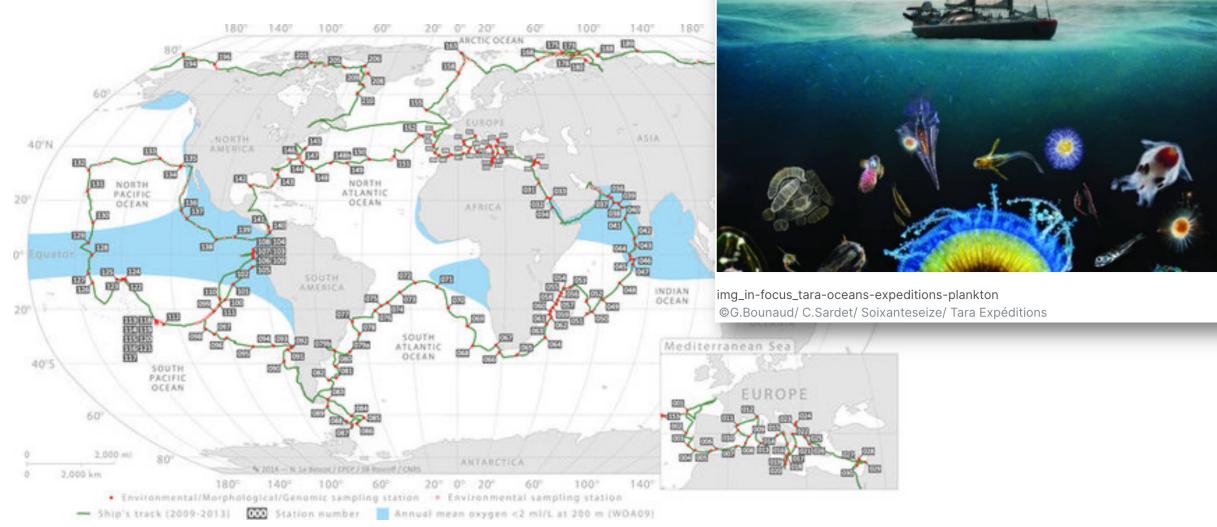
- Fimpera: can skip query positions
- Theoretical advantage

kmindex main technical ideas

Avoid branching in the code

- Fimpera: can skip query positions
- Good idea? small experiment

~5.2 times
less calls to
"square"


Compile	noif	with if		
g++	3848ms	2420ms		
g++ -O3	392ms	1087ms		

b:

- 1 billion Booleans
- 10% are "false" randomly distributed

No if:	
<pre>for (int i = 0; i < b.size(); i++) res += square(value[i]);</pre>	
With if:	1
<pre>for (int i = 0; i < b.size(); i++) if (v[i] == false) i = i+25; else res += square(value[i]); }</pre>	{

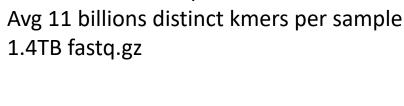
RESULTS

Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., ... & Searson, S. (2015). Open science resources for the discovery and analysis of Tara Oceans data. *Scientific data*, 2(1), 1-16.

Result: Index construction

Indexing: one command line

kmindex files


smer | (23)

|bloom| (30billions)

• 50 Tara Ocean samples

•

- Wall clock time: 2h56
- Peak RAM: 107GB
- Peak disk: 878GB
- Final index size: 164GB

Databank:

Tara Schooner - Creative Commons Attribution 3.0

Result: query

Databank:

- 50 Tara Ocean samples
- Avg 11 billions distinct kmers per sample
- 1.4TB fastq.gz

querying: one command line: `kmindex query index query.fa`

#queries (reads)	1	10 k		10 millions	
Max RAM (GB)	0.005	0.05	4.9	46.7	
Time (s) – cold RAM	<0.1	20	94	261 (4m21s)	
Time (s) – warm RAM	<0.1	10.84	41	227	

"rocket mode"			
Use as much RAM			
as available			

	#queries (reads)	1	10k	1 million	10 millions
	Max RAM (GB)	0.005	2.84	133	194
M					
	Time (s) – cold RAM	<0.1	17	61	99
	Time (s) – warm RAM	<0.05	7	16	64

Comparative results

Databank:

- 50 Tara Ocean samples
- Avg 11 billions distinct kmers per sample
- 1.4TB fastq.gz

	Step	Wall clock time	Max Memory	Max temp.	Output size
			(GB)	$\operatorname{disk}(\operatorname{GB})$	on disk (GB)
	KMC3 count	3h44	278	1019	1019
MataCmanh	KMC3 dump	18h11	0	5684	5684
MetaGraph	Build	71h30	250	1580	531
	Overall	93h40	278	5684	531
	KMC3 count	3h44	278	1019	1019
MetaProFi	KMC3 dump	18h11	0	5684	5684
Metariori	MetaProFi	8h20	232	226	226
	Overall	30h15	278	5684	226
PAC	All	15h59	190	$191 + 1415^{\beta}$	184
kmindex	All	2h56	107	878	164

 $^{\beta}$ in order to consider multiple files per sample, the original input file has to be concatenated and so doubled using PAC.

No. queries	1	10	100	1,000	10,000	100,000	1,000,000	10,000,000
MetaGraph Time	58m46							
MetaGraph Memory peak (GB)	148							
MetaProFi Time	0m12	0m15	1m33	2m57	3m02	3m37	11m56	1h29m12
MetaProFi Memory peak (GB)	0.3	0.3	0.3	0.32	0.44	2.25	21	203
PAC Time	5m30	16m48	34m31	38m58	36m06	36m03	39m54	36m35
PAC RAM (GB)	89	90	90	90	90	90	92	104
kmindex Time	0s06	0s23	1s24	4s71	19s78	53s72	1m13s	4m21s
kmindex Memory peak (GB)	0.005	0.005	0.006	0.01	0.05	0.45	4.9	46.7

Build

Query

ORA Server

https://ocean-read-atlas.mio.osupytheas.fr/

Index: all Tara Ocean Metagenomic samples (no abundance yet)

- Input fastq.gz files
 - 282 TB
 - 1,393 samples
- Final index size: 36TB
- Each sample:
 - Position
 - Species fraction sizes
 - Physico-chemical env.:
 - Ph, salinity, T°, ...

	EAN READ ATLAS	2.2		SeqDigger OCEAN	MALASDINA 2010 Mediterranear	Institute OCEANOMICS GEN
	• d • o Data mir	lisplay its percentage of sh bserve its co-variation with ned from Tara Oceans read	d sequence below to: ared k-mers on ocean maps In marine environmental features (P', O2, nutrients etc.) Is (<u>user marval</u>)			221
The second	- ry an	Example Dataset:	TARA	<		- AJAN
100		Job title:	Paste your fasta sequence here	Θ	9	
		Query sequence:	Paste your tasta sequence nere		Ŭ	19 15 1
P. A.		R threshold:	0	Θ	lî.	- 15 to
7		Maps: Bubble plots:	2			ARV C
1		Email:	Optional	0		C - A
1			Reset Submit			
			* 1	at she want to		

To conclude

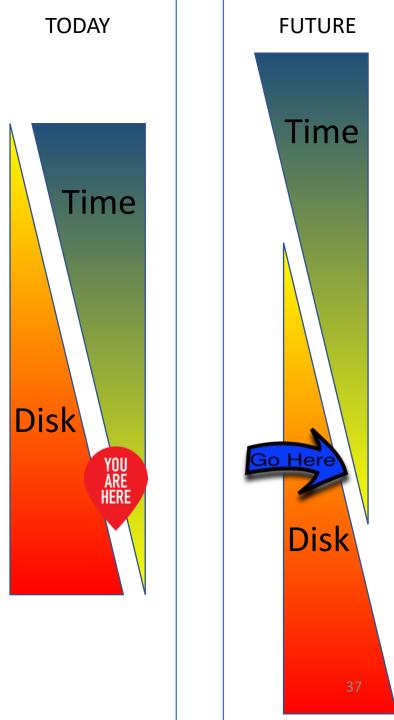
Take home messages

Keynote | Sebastian Bruch | "Information Retrieval Needs More Theoreticians" and practical considerations

If you want to scale up to big and complex data, consider:

- Limited access to RAM
- No cache misses
- Avoid branching in code

Suggestion:


Include these considerations in addition to theoretical complexity analyses *"compiled" complexity*

Limitations

- Not adapted to many "simple" samples
- Requires fast and local disk

What comes next?

- From TB to PB
 - Less disk <-> More Time
- Answers from 0.01s to 0.1s is ok
- Compress lines of the inverted indexes
 - RRR, LZ, grammars, ... ?

https://github.com/tlemane/kmindex
https://github.com/lrobidou/fimpera

https://ocean-read-atlas.mio.osupytheas.fr/

