
Indexing Large
Metagenomic Projects

Téo Lemane, Lucas Robidou, Rayan Chikhi, Pierre Peterlongo

©Antoine Doré
Illustration

Application to the Tara Oceans
Datasets

Sequencing a genome

2

>read1
ACCGGCAGCAGTCTCAGCATGACTCGATCGCGAGCAT
>read2
CGGCATCGTGGATCGCAGGAGTACGATCGTCAGAGTA
…
…
…
…
>read500,000000
CGTACGCAGGCAGCGGCATCAATGACTGTGTGTGTCA

One “run” (12h):
300GB raw data

Three runs:
1TB. One laptop

Sequencing a metagenome

3

>read1
ACCGGCAGCAGTCTCAGCATGACTCGATCGCGAGCAT
>read2
CGGCATCGTGGATCGCAGGAGTACGATCGTCAGAGTA
…
…
…
…
>read500,000000
CGTACGCAGGCAGCGGCATCAATGACTGTGTGTGTCA

One “run” (12h):
300GB raw data

Three runs:
1TB. One laptop

100000 species

Which data?

4

Raw sequences

• Fragmented data

• Error-prone (1% to 10% error rate)

• Important background noise

• Heterogenous

• Quality and quantity

• Volumes:

• hundreds millions fragments / experiment

• Millions of experiments

• Archived

51 petabytes

doubles: <2

years

5

Objectives

Index
• Genomic datasets:

• Large
• > hundreds, thousand samples
• TB to PB sized

• Complex
• metagenomes, metatranscriptomes,
• high variability (sea water, soil, …)

• With:
• Low RAM usage

• (max 100 GB)
• Dynamicity

• Able to add new samples to the index
• Fast

• Indexing hundreds of samples in a few hours

Query
• Short (reads) or long (genomes) sequences

• One sequence (google-like)
• Real time (milliseconds)
• No RAM

Or
• Many sequences (read set)

• Fast (~hours)
• RAM limited (max 100 GB)

• With or without abundance

At the price of
• Approximate answers (FP, overestimations)
• Need fast disk (local SSD preferentially)

6

Genomic research engine: conceptual view
kmers

7

Words
• No word in DNA

• Split to subsequences of fixed length k

(called kmers)

(20 < k < 40)

• Thousand billions distinct kmers

• (google indexes millions)

Compare sequences

• Sequence similarity ~ shared kmers count

ACGAGGTACGA ACGAGTTACGA
ACGA ACGA
CGAG CGAG
GAGG GAGT
AGGT AGTT
GGTA GTTA
GTAC TTAC
TACG TACG
ACGA ACGA

• 4 over 8 kmers shared

Genomic research engine: conceptual view
kmers

8

Words
• No word in DNA

• Split to subsequences of fixed length k

(called kmers)

(20 < k < 40)

• Thousand billions distinct kmers

• (google indexes millions)

Query vs Bank

• Sequence similarity ~ shared kmers count

ACGAGGTACGA BANK
ACGA
CGAG
GAGG
AGGT
GGTA
GTAC
TACG
ACGA

• 6 over 8 kmers shared

CATGACGATC

ACG
GCA

TC

GGCAGTT

ACGGAGATTC

CAGGGAGT
CA

CAGGATCG

ACGGCATT

TCGAGGTG

GG
GT
TG

Genomic research engine: conceptual view
index

9

Set representation

• A bank (genome, reads, …) represented by its kmer

content

Atomic question

• Given a queried kmer, does it exist in the indexed set?

kmer: ACGGATC…GACTCAA Yes or No

Genomic research engine: conceptual view
index

10

Set representation

• A bank (genome, reads, …) represented by its kmer

content

Atomic question

• Given a queried kmer, in which sets does it exist?

kmer: ACGGATC…GACTCAA

Set
42
58
…
1928

Genomic research engine: conceptual view
index

11

Set representation

• A bank (genome, reads, …) represented by its kmer

content

Atomic question

• Given a queried kmer, in which sets, with which abundance?

kmer: ACGGATC…GACTCAA

Set Abundance
42 1
58 23
… …
1928 4

Bloom Filter

A bit vector B of fixed size
Add one element -> hash(element) -> set B[hash] = 1
Query one element -> hash(element) -> returns B[hash]

0: absent
1: present (possibly a False Positive)

1 0 0 1 0 0 1 1

counting Bloom Filter

A bit vector B of fixed size, x bits per element
Add one element -> hash(element) -> B[hash] += 1
Query one element -> hash(element) -> returns B[hash]

0: absent
n>0: present with non null False Positive Rate
n: abundance (possibly overestimated)

12

: A bloom filter

Indexing: conceptual view

One read set:
• Extract & count kmers
• Filter kmers
• Generate a [counting] bloom

filter

Reads
>read1
ACGAG…ACGTA
>read2
ACGGC…GGACT
…
>read1000000
GGCGA…AGATA

Counted
kmers

AAAAAC 12
ACCATA 4
AGGTAT 1
…
TCGGAT 5

cBloom
Filter

0
12
4
…
0

13

Indexing: conceptual view

One read set:
• Extract & count kmers
• Filter kmers
• Generate a [counting] bloom

filter

N read sets:
• Create N [counting] bloom filters
• This is the index

Reads
>read1
ACGAG…ACGTA
>read2
ACGGC…GGACT
…
>read1000000
GGCGA…AGATA

Counted
kmers

AAAAAC 12
ACCATA 4
AGGTAT 1
…
TCGGAT 5

cBloom
Filters

0 8 3 8
12 0 13 0
4 7 6 0
… … … …
0 24 2 9

Reads
>read1
ACGAG…ACGT
…
>read1000000
GGCGA…AGAT

Reads
>read1
GCGAG…ACGT
…
>read1000000
AGCGA…AGAT

Reads
>read1
CCGAG…ACGT
…
>read1000000
TGCGA…AGAT

Reads
>read1
ACGAG…ACGT
…
>read1000000
GGCGA…AGAT

cBloom
Filter

0
12
4
…
0

14

Querying: conceptual view

15

cBloom
Filters

0 8 3 8
12 0 13 0
4 7 6 0
… … … …
0 24 2 9

ACGAGGTACGA
ACGA
CGAG
GAGG
AGGT
GGTA
GTAC
TACG
ACGA

Sequence

kmers
Abundance of

each kmer in each

indexed dataset

Approximate

abundance of

ACGAGGTACGA in

each indexed

dataset

Possible
today ?

From Marchet, C., et al. Genome Research 2021.
Update by Marchet, C. Montpellier 2022.

Fast (indexing + query)
• No random access

à no tree

Low memory
• Do not raise index in RAM

at indexing or query time

High complexity
• Do not require unitigs (next slides)
• No not associate k-mers to color vector

Note
theoretical complexity != practical speed
(modern compilers)

-03

Note (even more knowing that many of the authors of these tools are in the room J)
These tools are not adapted to our objectives (prev. slide) but
Adapted to other contexts, and have other features (alignments, variants, …)

Other tools:
• ggcat – endless query (debug in progress)
• Needle – Not precise enough
• PebbleScout – endless indexing 16

Cannot use unitigs

• On complex data, unitigs do not
help

• Example on a Tara Ocean sample
(complex marine metagenome),
k=28
• 213 millions unitigs
• average length 42
• Requires 3h20 to compute

(bcalm [1])

17

Figure from Marchet, C., Sneak peek at the -tigs!

[1] Chikhi, R., Limasset, A., & Medvedev, P. (2016). Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics, 32(12), i201-i208.

Proposed solution
fimpera + kmindex

Two contributions

[Counting] Bloom Filters

• Exponential decrease of Bloom filter FPrate
• Decrease of counting Bloom Filter

overestimations

From reads to Indexes

• Optimized kmer index:
• Representation
• Creation
• Update
• Query

Lucas Robidou Téo Lemane

Lemane T. et. al. “kmindex and ORA: indexing and real-time user-
friendly queries in terabytes-sized highly complex genomic datasets”
https://www.biorxiv.org/content/10.1101/2023.05.31.543043v2

19

Robidou, L, Peterlongo P. "fimpera: drastic improvement of Approximate
Membership Query data-structures with counts." Bioinformatics 39.5
(2023) doi: https://doi.org/10.1101/2022.06.27.497694

Fimpera: Counting BF with low disk, low FP,
low counting overestimates, no drawback

key idea for presence absence:
• If a kmer exists all words inside this

kmer (smers) exist

• If a smer of a kmer does not exist, the
kmer does not exist

In practice:
• Index smers
• When querying a kmer, report it as

present iif all its constituent smers are
present

z = k-s

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera

20

Fimpera: compared to x hash
functions in a Bloom Filter

z = k-s

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera

21

x

L x accesses
L Caches misses
L Saturates the filter

https://www.di-mgt.com.au/bloom-filter.html

David Eppstein — self-made, originally for a talk at WADS 2007

https://commons.wikimedia.org/wiki/User:David_Eppstein
http://www.ics.uci.edu/~eppstein/pubs/EppGoo-WADS-07.pdf

Fimpera: Counting BF with low disk, low FP,
low counting overestimates, no drawback

key idea for presence absence:
• If a kmer exists all words inside this

kmer (smers) exist

• If a smer of a kmer does not exist, the
kmer does not exist

In practice:
• Index smers
• When querying a kmer, report it as

present iif all its constituent smers are
present

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera

22

z = k-s

Fimpera: Counting BF with low disk, low FP,
low counting overestimates, no drawback

key idea for presence absence:
• If a kmer exists all words inside this

kmer (smers) exist

• If a smer of a kmer does not exist, the
kmer does not exist

In practice:
• Index smers
• When querying a kmer, report it as

present iif all its constituent smers are
present

Lucas Robidou https://github.com/lrobidou/fimpera

23

Save query time

Fimpera: Counting BF with low disk, low FP,
low counting overestimates, no drawback

key idea for abundance:
• The abundance of a kmer is at most the

abundance of its less abundant
constituent smer

In practice:
• Index smers abundances
• When querying a kmer, return the

abundance of its least abundant smer

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera

24

Fimpera: Counting BF with low disk, low FP,
low counting overestimates, no drawback

key idea for abundance:
• The abundance of a kmer is at most the

abundance of its less abundant
constituent smer

In practice:
• Index smers abundances
• When querying a kmer, return the

abundance of its least abundant smer

Indexed: Tara Ocean ERR1726642
Queried: Tara Ocean ERR4691696

Lucas Robidou https://github.com/lrobidou/fimpera

Without Fimpera, the same precision

would require ~35x times more space

25

Kmindex: indexation and real-time query
of kmers in terabyte-sized genomic data
banks

key features
• 1st of all:
• kmers -> sorted hash values

• Count hashes instead of ascii kmers
• Clever kmer filtration process
• Kmers -> partition -> parallelization
• At indexing time
• At query time

Téo Lemane

Lemane, T., Medvedev, P., Chikhi, R., & Peterlongo, P. Bioinformatics Advances, 2(1), vbac029.
Based on kmtricks :

key features
• simple inverted index
• mmap at query time
• Clever pages in RAM management

• Integrates Fimpera

https://github.com/tlemane/kmindex

26

27

kmindex main technical ideas

Avoid branching in the code
• Fimpera: can skip query positions
• Theoretical advantage

28

kmindex main technical ideas

Avoid branching in the code
• Fimpera: can skip query positions
• Good idea? – small experiment

29

b:
• 1 billion Booleans
• 10% are ”false” randomly distributed

~5.2 times
less calls to

“square”

RESULTS

30Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., ... & Searson, S. (2015). Open science resources
for the discovery and analysis of Tara Oceans data. Scientific data, 2(1), 1-16.

Result: Index construction

Indexing: one command line
kmindex files |smer| |bloom|

(23) (30billions)

• Wall clock time: 2h56
• Peak RAM: 107GB
• Peak disk: 878GB
• Final index size: 164GB

Databank:
• 50 Tara Ocean samples
• Avg 11 billions distinct kmers per sample
• 1.4TB fastq.gz

Tara Schooner - Creative Commons Attribution 3.0

31

Result: query

querying: one command line: `kmindex query index query.fa`

Databank:
• 50 Tara Ocean samples
• Avg 11 billions distinct kmers per sample
• 1.4TB fastq.gz

#queries (reads) 1 10k 1 million 10 millions

Max RAM (GB) 0.005 0.05 4.9 46.7

Time (s) – cold RAM <0.1 20 94 261 (4m21s)

Time (s) – warm RAM <0.1 10.84 41 227

#queries (reads) 1 10k 1 million 10 millions

Max RAM (GB) 0.005 2.84 133 194

Time (s) – cold RAM <0.1 17 61 99

Time (s) – warm RAM <0.05 7 16 64

“rocket mode”
Use as much RAM
as available

32

Comparative results
Databank:

• 50 Tara Ocean samples
• Avg 11 billions distinct kmers per sample
• 1.4TB fastq.gz

Build

Query

33

ORA Server
https://ocean-read-atlas.mio.osupytheas.fr/

Index: all Tara Ocean Metagenomic samples (no abundance yet)
• Input fastq.gz files
• 282 TB
• 1,393 samples

• Final index size: 36TB
• Each sample:
• Position
• Species fraction sizes
• Physico-chemical env.:

• Ph, salinity, T°, …

34

https://ocean-read-atlas.mio.osupytheas.fr/

To conclude

35

Take home messages

36

and practical considerations

If you want to scale up to big and complex data, consider:
• Limited access to RAM
• No cache misses
• Avoid branching in code

Suggestion:
Include these considerations in addition to theoretical
complexity analyses

“compiled” complexity

What comes next?
• From TB to PB

• Less disk <-> More Time

• Answers from 0.01s to 0.1s is ok
• Compress lines of the inverted indexes

• RRR, LZ, grammars, … ?

Disk

Time

TODAY

Disk

Time

FUTURE

Limitations
• Not adapted to many “simple” samples
• Requires fast and local disk

37

Thanks J

https://github.com/tlemane/kmindex
https://github.com/lrobidou/fimpera

https://ocean-read-atlas.mio.osupytheas.fr/

38

39

